
1 / 209

Motor Control Devices

User’s Manual

Version 1.9

2 / 209

Version: 1.9
Last revision: April 5, 2019
Printed in Switzerland

© Copyright 2002-2019 FiveCo Sàrl. All rights reserved.
The contents of this manual may be modified by FiveCo without any warning.

Trademarks
Windows® is a registered trademark of Microsoft Corporation.
Ethernet® is a registered trademark of Xerox Corporation.
Java® is a registered trademark of Sun Microsystem.

Warning
This device is not intended to be used in medical, life-support or space products.

Any failure of this device that may cause serious consequences should be prevented through the
implementation of backup systems. The user agrees that protection against consequences resulting from
device system failure is the user's responsibility. Changes or modifications to this device not explicitly
approved by FiveCo will void the user's authority to operate this device.

Support
Web page: http://www.fiveco.ch/motor-controlers-products.html
e-mail: support@fiveco.ch

http://www.fiveco.ch/motor-controlers-products.html
mailto:support@fiveco.ch

3 / 209

Revision history

Revision Date Author Note Firmware version Applet
version

FSoft-
MotorCtrl
version

1.0 08.06.2016 KB - First revision based on FMod-
IPECMOT 48/10 v3.4 and FMod-
I2CDCMOT DB 48/1.5 v2.4
user’s manual

FMod-IPECMOT 48/10 T1
Since 5.0
FMod-I2CSTEPMOT SLP 35/1
& 35/0.1
Since 3.2
FMod-I2CDCMOT SLP 48/1
Since 2.2
FMod-I2CDCMOT DB 48/1.5
Since 3.14
FMod-I2C485ECMOT DB
48/10
Since 3.6

4.0 2.14

1.1 23.06.2016 KB - Correction made on thermal
limitation of the controllers

Same as above 4.0 2.14

1.2 09.09.2016 KB - Correct CURRENTMAX for
FMod-I2CSTEPMOT 35/0.1
- Fmod-IPECMOT 48/10 T2 final
release

FMod-I2CSTEPMOT SLP 35/1
& 35/0.1
Since 3.2
FMod-IPECMOT 48/10 T2
Since 3.1

4.0 2.14

1.3 29.05.2017 XG - IOState 0x56 + IOCfg 0x55 7.0 4.1 3.01

1.4 05.07.2017 XG Options.12 Dead zone linear
Optiona.13 IO on Address bus

7.2 4.1 3.02

1.5 21.07.2017 PHD - FeedForward registers
- FeedForward explanation

7.2 4.1 3.01

1.6 14.08.2017 KB - I2C and RS485 address
selection improved explaination
as well as I/Os
- J2 instead of J1 for FMod-
I2CSTEPMOT and FMod-
I2CDCMOT

- 4.1 3.02

1.7 04.10.2017 XG - Warnings.26 Index state 7.5 4.1 3.05

1.8 22.12.2017 KB - Improved explanation on
Enable pin for FMod-IPECMOT
48/10 T1 & T2

- 4.1 3.06

1.9 05.04.2019 XG - TrackPosition for multi synchro
- Encoder 1 failure detection
- Communication Watchtdog

 4.1 3.10

4 / 209

Table of Contents

1. FiveCo’s motor controllers product line .. 6

2. FMod-IPECMOT 48/10 T1 & T2 ... 9
Operating conditions .. 9
Overview .. 10
Quick start for FMod-IPECMOT 48/10 T1 & T2 ... 15
Hardware ... 18
Java Applet ... 25

3. FMod-I2C485ECMOT DB 48/10 ... 28
Operating conditions ... 28
Overview .. 28
Hardware ... 32

4. FMod-I2CDCMOT DB 48/1.5 & SLP 48/1 ... 39
Operating conditions ... 39
Overview .. 40
Hardware ... 45

5. FMod-I2CSTEPMOT SLP 35/1 & 35/0.1 .. 48
Operating conditions ... 48
Overview .. 49
Hardware ... 52
Position and phases synchronisation .. 54

6. Ethernet Interface .. 57
General .. 57
TCP-HTTP port (TCP # 80) .. 58
Control ports (TCP # 8010) & (UDP #7010) ... 58
Easy IP address config (UDP # 7010) .. 60
Checksum calculation .. 62

7. I2C Interface ... 64
Description .. 64
Protocol .. 64
Sequence .. 65
Write Sequence (1 byte and 4 bytes) .. 67
Read Sequence (1 byte and 4 bytes) .. 68

8. RS485 Interface .. 69
Physical layer – RS485 ... 69
Registers Access Protocol ... 70

9. Configuration software : FSoft-MotorCtrl .. 73
Overview .. 73

10. Motion Control modes .. 79
Motor regulation parameters .. 79
List of regulation modes ... 81
Brake mode ... 81
Driver Open mode... 82

5 / 209

Open Loop mode ... 82
Wait mode .. 82
Speed Control mode ... 83
Position Control mode ... 88
Standby mode .. 93

11. Auto-tuning ... 94
What does auto-tuning consist of? ... 94

12. Limit switches ... 96

13. Homing (position reference) ... 97
List of Homing methods ... 98
Homing method 0: Actual position is correct, don’t alter .. 100
Homing method 1: Actual position is correct, set new INPUT 100
Homing method 2: Move backward (-) to the first index .. 100
Homing method 3: Move forward (+) to the first index .. 100
Homing method 4: Move backward (-) to the mechanical limit 101
Homing method 5: Move forward (+) to the mechanical limit 101
Homing method 6: Move backward (-) to a mechanical limit and index 102
Homing method 7: Move forward (+) to a mechanical limit and index 102
Homing method 8: Move backward (-) to limit switch 1 .. 103
Homing method 9: Move forward (+) to Limit Switch 1 ... 103
Homing method 10: Move backward (-) to Limit Switch I and index 104
Homing method 11: Move forward (+) to Limit Switch 1 and index 104
Homing method 12: Move of Start Input .. 105
Homing method 13: Move of Start Input to the Limit Switch 1 106

14. Loops management ..107
Overview ... 107
Loops configuration ... 108
Loops mode ... 108
Loops Options and Status .. 110
Peak current management ... 110
Using Loops mode example ... 111

15. Register management ..112
Memory organization .. 112
Full description of registers .. 113

6 / 209

1. FiveCo’s motor controllers product line

Model
FMod-IPECMOT T2
48/10

FMod-IPECMOT T1
48/10

FMod-I2C485ECMOT DB
48/10

Dimension
(LxBxH) [mm]

120x110x34 (DIN rail) 120x110x34 (DIN rail) 80x56x25

Motor type
DC brushed
DC brushless

DC brushed
DC brushless

DC brushed
DC brushless

Communication
bus

Ethernet TCP/IP (1ms) Ethernet TCP/IP (2ms)
I2C
RS485

Power supply
(input)

DC [9-48V], max 10A DC [15-48V], max 15A DC [15-48V], max 15A

Logic supply
(input)

Internally generated Internally generated Internally generated

Encoder

5 V
2 channels quadrature
incremental with
differential output + index
(A/B 500kHz = 2M p/s)

5 V
2 channels quadrature
incremental with
differential output + index
(A/B 250kHz = 1M p/s)

5 V
2 channels quadrature
incremental with
differential output + index
(A/B 250kHz = 1M p/s)

Limits / Inputs 2 limits + 2 IOs 2 limits + 1IO 2 limits

Phases output

PWM 125kHz or 62kHz
4 quadrants management
Thermal protection
10 A max
Current measurement
Variable self filter
125uH @5A, 75uH @10A

PWM 69kHz or 35kHz
4 quadrants management
Thermal protection
10 A continuous
15 A max

PWM 69kHz or 35kHz
4 quadrants management
Thermal protection
10 A continuous
15 A max

Motion control

32 bit PID
Auto-tuning
. Brake mode
. Free mode
. Open loop mode
. Speed control mode
. Position control mode

32 bit PID
Auto-tuning
. Brake mode
. Free mode
. Open loop mode
. Speed control mode
. Position control mode

32 bit PID
Auto-tuning
. Brake mode
. Free mode
. Open loop mode
. Speed control mode
. Position control mode

Standby mode - - -

Extra feature

EC motor’s Hall sensor can
be used as encoders
Dual encoder
management
Active dissipation
Phases short-circuited @
power-down

EC motor’s Hall sensor can
be used as encoders

EC motor’s Hall sensor can
be used as encoders

7 / 209

Model FMod-I2CDCMOT DB 48/1.5 FMod-I2CDCMOT SLP 48/1

Dimension (LxBxH)
[mm]

48x34x23 26x28.5x6

Motor type DC brushed DC brushed

Communication bus I2C I2C

Power supply (input) DC [10-48V], max 2A DC [10-48V], max 2A

Logic supply (input) DC [5V], max 50mA DC [5V], max 50mA

Encoder

5 V
2 channels quadrature
incremental
(A/B 250kHz = 1M p/s)

5 V
2 channels quadrature
incremental
(A/B 500kHz = 2M p/s)

Limits / Inputs 2 limits 2 limits + 2 IOs

Phases output

PWM 69kHz or 35kHz
4 quadrants management
Thermal protection
1.5 A continuous
2.0 A max

PWM 69kHz or 35kHz
4 quadrants management
Thermal protection
1 A continuous
2.0 A max

Motion control

32 bit PID
Auto-tuning
. Brake mode
. Free mode
. Open loop mode
. Speed control mode
. Position control mode

32 bit PID
Auto-tuning
. Brake mode
. Free mode
. Open loop mode
. Speed control mode
. Position control mode

Standby mode -

Max 1 uA @ 5V logic
(50nA at 25°C)
Max 1 uA @ motor supply
(50nA at 25°C)

Extra feature - Low power mode

8 / 209

Model FMod-I2CSTEPMOT SLP 35/1 FMod-I2CSTEPMOT SLP 35/0.1

Dimension (LxBxH)
[mm]

39.8x22x6 39.8x22x6

Motor type
2 phases stepper
bipolar

2 phases stepper
bipolar

Communication bus I2C I2C

Power supply (input) DC [9-35V], max 2A DC [9-35V], max 150mA

Logic supply (input) DC [5V], max 50mA DC [5V], max 50mA

Encoder - -

Limits / Inputs 2 limits 2 limits

Phases output

PWM 50kHz
Max 8’192 full steps/s
Resolution: ¼ step
Thermal protection
1 A continuous
1.5 A max

PWM 50kHz
Max 8’192 full steps/s
Resolution: ¼ step
Thermal protection
150mA max and continuous

Motion control

. Open mode

. Speed control mode

. Position control mode

. Open mode

. Speed control mode

. Position control mode

Standby mode

Max 1 uA @ 5V logic
(50nA at 25°C)
Max 1 uA @ motor supply
(50nA at 25°C)

Max 1 uA @ 5V logic
(50nA at 25°C)
Max 1 uA @ motor supply
(50nA at 25°C)

Extra feature Low power mode Low power mode

9 / 209

2. FMod-IPECMOT 48/10 T1 & T2

Operating conditions

FMod-IPECMOT 48/10 T2

 Operating temperature 0 – 70 °C
 Supply voltage Vcc 9-48 VDC
 Supply current max ±10 A
 Power consumption 77mA when idle @ Vcc 12V

42mA when idle @ Vcc 24V
30mA when idle @ Vcc 48V

 Input capacity (Power +,-) ~3000uF, ~10mOhm ESR
 5V out (encodeur + hall + limits) 5.0 V (max 300 mA)
 Max A&B encoder signal 500 kHz = 2Mio pulses/s (CPRx4)
 Output voltage 90% Vcc @ 62.5kHz PWM
 83% Vcc @ 125kHz PWM
 Max. output current 10 A
 Continuous OUTPUT current Brushed and brushless motor 8A

(Pwr Mosfet thermal limitation) (Tamb. 25°C, vertically mounted!)

FMod-IPECMOT 48/10 T1

 Operating temperature 0 – 70 °C
 Supply voltage Vcc 15-48 VDC
 Supply current max ±10 A
 Power consumption 85mA when idle @ Vcc 15 V
 65mA when idle @ Vcc 24 V
 45mA when idle @ Vcc 48 V
 Input capacity (Power +,-) ~3000uF, ~10mOhm ESR
 5V out (encodeur + hall + limits) 5.0 V (max 150 mA)
 Max A&B encoder signal 250 kHz = 1Mio pulses/s (CPRx4)
 Output voltage 92% Vcc @ 35kHz PWM
 85% Vcc @ 69kHz PWM
 Max. output current 15 A
 Continuous OUTPUT current Brushed Motor 10A (Tamb. 25°C)
 (Pwr Mosfet thermal limitation) Brushless Motor 8A (Tamb. 25°C)
 (Vertically mounted!)

10 / 209

Overview

Applications

The FMod-IPECMOT 48/10 T1 & T2 are motion control and driver devices
(up to 480W) for DC motors, either with brushes or brushless (EC) with
hall sensors. It is particularly interesting not only because of its small size and
quality of the regulation system but also because of its communication
protocol (Ethernet: TCP/IP-HTTP) which gives it an easy interfacing
capability.

Both cards can be accessed through a TCP connection (socket) from any
computer or through a simple web page using a standard browser, allowing

for the easy setup of the controller.

The device connections are described on the following pages.

For a “Quick start”, go to page 15.

Type 2 updates

Since the FMod-IPECMOT 48/10 T2 is an upgrade made on the T1, they
share the same scope of applications. The T2 main updates made compared
to the T1 are explained below.

The dissipation of the breaking energy is a security feature that ensures a
small increase of the supply voltage even when performing a fast break at
high speed and high torque.

The second encoder management is useful for applications where a possible
“slippery” transmission exists between the motor output shaft and the final
desired movement. The second encoder is to be implemented on the
output movement and the first one on the motor.

Moreover, the supply power range has been increased, [15-48V] for T1 and
[9-48V] for T2.

Another feature is the implementation of a relay, short-circuiting the phases
of the motor when the FMod-IPECMOT 48/10 T2 is powered down,
therefore performing a magnetic brake.

Finally a measurement of the current through the motor windings is
accessible externally in a new register CURRENTSENSE (0x2B).

11 / 209

Software operating principle

The PC software that exchanges data with this device will use a dedicated
protocol layer on top of the TCP Layer (see “6. Ethernet Interface”
chapter). This protocol is Question & Answer oriented. The PC will send a
question, wait for the answer and so on.

To configure the card’s parameters, the protocol uses an Internal Register
Access routine (see “15. Register management” chapter).

The Java library and the Embarcadero (Borland) C++ code sample and DLL
are available from http://www.fiveco.ch/produit-fmod-ipecmot-4810-t1.html.
It can help programmers get started with their development.

Hardware description of FMod-IPECMOT 48/10 T2

J1
Power -

Power +

SOS button

& LED output indicator

JP3

Ethernet

RJ45

J7

Motor

Encoder 1

height 35 mm

J3

J5
GND

Limit1 in

Limit2 in

+5V

IO2

IO1

Enable

GND

J4
Motor

Encoder 2

1
2
0
 m

m

DIN rail TS35 / 7.5 or 15

Connector

EC1

DC- / EC2

DC+ / EC3

Hall +5V

Hall GND

Hall 1

Hall 2

Hall 3

J2

112 mm

http://www.fiveco.ch/produit-fmod-ipecmot-4810-t1.html

12 / 209

Connector J3 and J4 pinning

The below figure shows the pinning from the incremental encoders; the
connector reference on the PCB side is : DIN41651 2x5 pins.

1 Not connected
2 5V (<150mA) (out)
3 GND (out)
4 Not connected
5 Encoder channel A inverted (in)
6 Encoder channel A (in)
7 Encoder channel B inverted (in)
8 Encoder channel B (in)
9 Encoder Index inverted (in)
10 Encoder Index (in)

Notes:
 The device’s logic power supply is internally generated by the card

from the DC supply. It can be used externally to power limits, hall
sensors and encoder to a maximum of 300mA in total.

9 7 5 3 1

10 8 6 4 2

13 / 209

Hardware description of FMod-IPECMOT 48/10 T1

Power -

Power +

Enable

IO1

J1

SOS button

& LED output indicator

JP3

Ethernet

RJ45

J7

Motor

Encoder

J5

J2

height 35 mm

J3

GND

Limit2 in

+5V

J4
GND

Limit1 in

+5V

EC1

DC- / EC2

DC+ / EC3

Hall +5V

Hall GND

Hall 1

Hall 2

Hall 3

112 mm

1
2
0
 m

m

DIN rail TS35 / 7.5 or 15

Connector

14 / 209

Connector J3 pinning

The below figure shows the pinning from the incremental encoder; the
connector reference on the PCB side is : DIN41651 2x5 pins.

1 Not connected
2 5V (<150mA) (out)
3 GND (out)
4 Not connected
5 Encoder channel A inverted (in)
6 Encoder channel A (in)
7 Encoder channel B inverted (in)
8 Encoder channel B (in)
9 Encoder Index inverted (in)
10 Encoder Index (in)

Notes:
 The device’s logic power supply is internally generated by the card

from the DC supply. It can be used externally to power limits, hall
sensors and encoder to a maximum of 200mA in total.

9 7 5 3 1

10 8 6 4 2

15 / 209

Quick start for FMod-IPECMOT 48/10 T1 & T2

This section is intended to help users quickly plug the device into their
system and establish a connection between the computer and the device.
Detailed information about hardware and software is provided further in this
document.

You will find the device’s factory communication settings on the box label.

The MAC address is the 48-bit unique identifier on Ethernet networks. The
IP address can be modified. Refer to the “Plug and Play” and “Change IP
address” chapters to complete the first configuration of the controller.

Note: If the device has already been configured and the IP address has been
changed to an unknown value, you can retrieve an SOS IP address (the one on
label) by pressing the “SOS button” during the normal operation of the device.

Plug and Play

1. Connect the DC power ([15-48V] for T1 or [9-48V] for T2) and
Enable pin to the device. (The Enable pin can be connected to the
“Power +” pin, if not needed). Although it should be used as an
emergency switch to stop the motor.

2. Connect the device to a computer using a RJ45 cross-wired cable
(direct link), or with a straight cable to an Ethernet switch.

1

2

3

4

FMOD-IPECMOT48/10 BOX

INPUT(supply) : 15-48V DC, max 10A

MAC: 00-50-C2-30-xx-xx / IP : 169.254.5.5

This device is not intended to be used in a medical, life-support or space product. Any failure
of this device that may cause serious consequences should be prevented by implementation
of backup systems. The user agrees that protection against consequences resulting from
device system failure is the user's responsibility. motion@fiveco.ch / www.fiveco.ch

16 / 209

3. Connect the motor to the device. For brushless motors, see “How

to connect hall sensors” chapter.

4. Connect the 10-pin encoder.

5. Download the free windows application “FSoft-MOTORCTRL.exe”
from http://www.fiveco.ch/produit-fmod-ipecmot-4810-t1.html to
your hard disk.

6. Deactivate your computer’s firewall software or configure it to

accept TCP/IP connections and broadcast messages from “FSoft-
MOTORCTRL.exe”.

7. Run “FSoft-MOTORCTRL.exe”; if the IP address of the controller

needs to be modified refer to the “Change IP address” next section
to configure the FMod-IPECMOT 48/10 T1 or T2 IP address to a
valid IP on your network.

8. Click on “CommunicationScan Network” and select your FMod-

IPECMOT 48/10 T1 or T2 (using the MAC address).

9. Set the regulation mode to “Open Loop” and send a new input (-
65536…+65536) using the track bar. The interface should update
the position smoothly, the connection should not get disconnected; if
this is the case, the IP address might not be well configured.

10. The motor should be moving. Select the “Auto-tuning” menu and

follow the instructions.

11. Set the regulation mode for your application (speed or position) and
move the input track bar to send the new input.

http://www.fiveco.ch/produit-fmod-ipecmot-4810-t1.html

17 / 209

Change IP address

To easily change the factory IP address, the user can use the “FSoft-
MOTORCTRL.exe” software available at http://www.fiveco.ch/produit-fmod-
ipecmot-4810-t1.html under the “support” section.

1. Connect your new device to your PC network.
2. Start the FSoft-MotorCtrl application.
3. Click on "CommunicationEasy change IP".
4. The software will scan the network and display a list of all FiveCo

devices found.
5. Select the MAC address corresponding to your new device.
6. If you have more than one network adapter on your PC, the

software will ask you to select the one which is connected to the
same network as the FMod-IPECMOT 48/10.

7. The software will suggest a new IP address without the last byte.
Choose a new IP (one that is not already used on your network! !)
and click the "Change IP address" button.

All done! The device has a new address and subnet mask (the same as your
PC). These are automatically saved to EEPROM.

You can now connect to the device with the Win32 software or open its
web page by typing the new IP address into a web browser.

Please note:
The IP address won't be changed if a TCP connection exists with the device.

http://www.fiveco.ch/produit-fmod-ipecmot-4810-t1.html
http://www.fiveco.ch/produit-fmod-ipecmot-4810-t1.html

18 / 209

Hardware

Power supply

[15-48V] for T1 or [9-48V] for T2 with the peak current equal to the
nominal current of the motor on connector J1 (min 1A). E.g. for a motor
with a constant of 24V and 2A, choose a power supply of 24V 2A. Don’t
worry about the motor start current you will see on the datasheet, it is
electronically limited by the device.

WARNING: When braking (deceleration), the 4Q device regenerates the
inertial energy to electricity, so the voltage (J1 Power+ and Power-)) could
be higher than the power supply.

For FMod-IPECMOT 48/10 T1, the device will accept overrides if below
50V, or if between 51-53V inside the clamping diode, it will temporarily
accept 3-5A. If your system does not accept overrides, you need to add an
external dissipation system for example.

For FMod-IPECMOT 48/10 T2, active dissipation hardware is included on-
board. Refer to the next chapter “Dissipation” for more information.

The power supply has to be able to manage reverse power when braking
(power generation) on connector J1 Power+ and Power-.

For FMod-IPECMOT 48/10 T1
> Below 12.0V, the driver is automatically set to Brake mode.
> Over 56V, the driver is automatically set to DriverOpen mode.

For FMod-IPECMOT 48/10 T2
> Below 8.0V, the driver is automatically set to Brake mode.
> Over 56V, the driver is automatically set to DriverOpen mode.

Dissipation

Active dissipation is a feature of the FMod-IPECMOT 48/10 T2. It ensures a
constant current dissipation of 3A, for any power supply voltage, through
power transistors inside the case.

The dissipation is activated when the voltage measured by the controller
exceeds a certain threshold. This threshold could be set by the user with the
register DISSIPATIONVOLTAGE (0x2F), or use the automatic feature setting
the OPTIONS.16 bit (0x2C).
When the automatic threshold is used, the dissipation voltage threshold
stabilizes 3 V above the actual average of the measured input power voltage.
When a too abrupt rise on the measured voltage occurs, the dissipation is
activated while the threshold is still updated with the current average. The
following figure shows this mechanism.

19 / 209

The fixed DISSIPATIONVOLTAGE (0x2F) register is not saved; therefore it is
not restored at the card power-up (security reasons). When the user uses
the fixed dissipation voltage, it has to be sent to the card after each power-
up.

An estimated temperature of the dissipation power transistors are accessible
through a new register: DISSIPTEMPERATURE (0x60). When the dissipation
temperature is above 170°C, the dissipation feature is disabled to prevent
damaging the controller. When the temperature of the dissipation transistors
drops below 170°C, the dissipation feature is automatically re-enabled.

See register description OPTIONS (0x2C), DISSIPATIONVOLTAGE (0x2F) and
DISSIPTEMPERATURE (0x60) for more information.

Motor type

The device drives DC brushed motors as well as brushless motors with hall
sensors, (0.1-10A, 3-48V).
FMod-IPECMOT 48/10 T1 & T2 automatically detects whether the motor is
brushed or brushless.

If speed control or positioning is needed, use A&B (&Index) channel
quadrature incremental encoders with a differential line driver (EIA/TIA/RS
422). FMod-IPECMOT 48/10 T2 is compliant with non-differential encoder
lines. Each logical change of A or B channels will define a pulse.
If the encoder is defined in cycles (or counts) per revolution (CPR), you can
multiply the cycles by 4 to obtain the result in pulses (PPR).

For example: an encoder of 500 CPR represents 2000 PPR in the controller.

With brushless motors only, it is possible to configure the device to use the
hall sensors (6 states/cycle) for speed control and positioning, but the
resolution is poor.

[V]

Time [ms]

Dissipation threshold

Voltage

Dissipation is active

Auto dissipation explained

20 / 209

Brushed motor (DC)

Open Loop only, no regulation because
no feedback!

Brushed motor (DC) with encoder

Full regulation: speed or positioning.

(*) For FMod-IPECMOT 48/10 T2, also compliant with non-differential encoder lines

Brushless motor (EC)

Full regulation: speed or positioning with
hall sensors as encoders.
Poor regulation due to the few states of
hall sensors.
(see OPTIONS register (0x2C) to set this
feature)

Brushless motor (EC) with encoder

Full regulation: speed or positioning

(*) For FMod-IPECMOT 48/10 T2, also compliant with non-differential encoder lines

10 lines
Quadrature encoder
with differential line
driver
A,/A,B,/B,(I,/I),+5V,0V
(+2 not connected)

2 lines
Power motor lines +, -

2 lines
Power motor lines +, -

3 lines
Power motor lines
phases 1,2,3

5 lines
Hall sensor lines
hall 1,2,3 , +5V,0V

10 lines
Quadrature encoder
with differential line
driver
A,/A,B,/B,(I,/I),+5V,0V
(+2 not connected)

3 lines
Power motor lines
phases 1,2,3

5 lines
Hall sensors
hall 1,2,3 , +5V,0V

21 / 209

How to connect hall sensors

Different motor manufacturers do not have the same
enumeration for hall sensors 1,2,3 and motor phases
(windings) 1,2,3.

Here is a method to find the corresponding connection
between the brushless motor and the device.

Connect phases (windings) 1,2,3 (U,V,W=A,B,C) to the
FMod-IPECMOT 48/10 motor connector J2, through pins
EC1, EC2, EC3.

Connect the +5V and GND hall sensors to the J2
connector.

Connect the hall sensor lines 1,2,3 to the J2 connector.

Power the device, connect the Ethernet cable, set the
Enable pin to high, set the REGULATIONMODE register to
“Open Loop”, set INPUT to 48’000 (~3/4 full PWM).
If the motor turns correctly, you have done it!

If the motor does not turn, set REGULATIONMODE to
“Driver Open”, and switch the hall sensor lines: Hall1
Hall2, Hall2Hall3, Hall3 Hall1.
Set REGULATIONMODE to “Open Loop”, set INPUT to
48’000.
If the motor turns correctly, you have done it!

If the motor does not turn, do the same manipulation one
more time: switch the hall sensor lines: Hall1Hall2,
Hall2Hall3, Hall3 Hall1…
Set REGULATIONMODE to “Open Loop”, set INPUT to
48’000.
If the motor turns correctly, you have done it!

If it still isn’t working, unlucky!
Swap lines Hall 1 Hall 2
Test it and if it still doesn’t work, switch the hall sensor
lines: Hall1 Hall2, Hall2Hall3, Hall3 Hall 1, test
again, and switch one more time.
If it still doesn’t work, the motor or device is most likely
damaged.

22 / 209

Dual encoder management

This is a feature of the FMod-IPECMOT 48/10 T2 that is really useful when
the transmission between the motor and the final movement can be
slippery. The dual encoder management is enabled by setting the
OPTIONS.10 bit to ‘1’. The second encoder can be inverted setting the
OPTIONS.11 bit to ‘1’.

As in the example above, the 1st encoder is located on the motor while the
2nd one is on the final output movement. When reading the SPEED (0x28)
register, it is expressed in pulse/sec of the 1st encoder, while the POSITION
(0x26) register is expressed in pulses of the 2nd encoder. Let’s look at the
trapezoidal speed trajectory made by the motor in position control mode.

The Acceleration and the Top speed phases are calculated with respect to
the encoder 1. However the speed consign during the Deceleration phase is
calculated with respect to the encoder 2, since the position is updated with
the 2nd encoder. Therefore a relation has to be made between the encoder
2 “space” and the encoder 1, since the speed consign is calculated with the
2nd encoder but applied to the 1st encoder. The register ENCODERSRATIO
(0x44) makes the link between the encoder 1 and 2.

M

Motor + rubber
Encoder 1

Encoder 2

Speed profile in the “Position Control mode”

Time [s]

sp
e
e
d

[p
u
ls
e
s

/s
e
c]

Top speed

Acceleration

Deceleration

Goal reached

23 / 209

The ENCODERSRATIO (0x44) is the ratio between the encoder 1 and the
encoder 2. Which means that if an increase1’000 pulses on the 1st encoder
changes the 2nd encoder of 500 pulses, the ratio is 2. Refer to the register
(0x44) description under the “Register management” chapter to have more
information on how to write this value on the controller.

The AUTO-TUNING (0x39) function can easily estimate this value when both
encoders are connected and the OPTIONS.10 (use encoder 2) bit is set to
‘1’. If the AUTO-TUNING cannot be used, the user can set the value of
ENCODERSRATIO manually; it does not need to be the exact ratio (±10% is
completely suitable) since the regulation during the deceleration phase will
compensate for the error in the ratio.

The best situation is when both encoders have a good resolution, typically
>1000 CPR, and the ratio is close to unity.

Enable pin

This feature is for security purposes and stops the output power (connector
J1).

For the FMod-IPECMOT 48/10 T1, the voltage ranging between [4.2V; 48V]
on the Enable pin allows the driver to work normally (regulation on motor).

If the voltage on the Enable pin drops below 1.6V for FMod-IPECMOT
48/10 T1 or 4V for FMod-IPECMOT 48/10 T2, the driver (motor) is set to
“Brake” mode.

When the Enable pin goes back to high [4.2V; 48V], the user needs to
change the mode from “Brake” back to the required one.

Limit Switch: stop, reference, stopper type

Both Limit1 and Limit2 are inputs lines with a Schmitt trigger (logic low : [0-
1V], logic high [4-5V]).

5 VDC sensors can be powered from the connector (J4 and J5 for T1 and J5
for T2). Open collector (NPN,PNP) and open drain (N,P) output stage
sensors can be used.

Micro switches or reed sensors can also be used, but take a special care to
the rebounds of the limit signal (typ <10ms).

WARNING: Both Limit Switch sensors (L1 & L2) must be of the same type
(NPN,N or PNP,P) because of the internal pull-up or pull-down resistor
selection.

24 / 209

Inputs and outputs

Only 1 I/O is present on the FMod-IPECMOT 48/10 T1 (connector J1), 2
I/Os are present on the FMod-IPECMOT 48/10 T2 (connector J5). The
voltage range is [0;5V] for inputs and outputs.

Refer to registers description IOCFG and IOSTATE to have more informations
on the usage of the I/Os.

LED state

 Green: PWM duty cycle [0-75%]
 Yellow: PWM duty cycle [75-99%]
 Red: PWM at 100% (possible current limitation)

25 / 209

Java Applet

The Java Applet stays accessible to allow an handy access to parameters, though
users should use the configuration software: FSoft-MotorCtrl. Refer to the chapter
9 to have more information.
Note also that v4.0 of the applet is described here.

A specific Java Applet is provided with this device in order to control the
parameters without having to write any specific software.
When you use a browser to load the HTTP web page loaded on the device,
a Java Applet (included with the on-board web page) begins a
communication between the device and the browser software (PC), and
periodically refreshes all the useful registers (read and write sequences).

Overview

To connect to the http server included on the device, simply open your web
browser (not working with Google Chrome explorer) and type the IP
address of the device. Here is an example with default address:

“http:// 169.254.5.5”

The applet is downloaded from the device to your computer and runs as a
local process. You need to use a web browser with an up to date version of
Java (1.8 minimum).

Please note that on a MS Windows®-based computer, a delay of several
seconds can occur when you download the Java Applet due to an OS
NetBios issue.

26 / 209

State panel

The state panel shows the status of the main information related to the
device. The values of the registers are displayed.

The upper part displays current state of the system with the Warning
register bit at the right. The Clear button permits to clear warning bits fast.

The lower part allows access to all writable registers of the device. When
you choose a register in the list, its current value is displayed in the white
text area. You can change this value and use the Set button to update the
register content. The Save button provoke the backup of the current
registers state to User EEPROM memory.

27 / 209

Main parameters panel

This panel is used to change the device’s main parameters:

 IP address: the new one will be valid only when all users are

disconnected, including this applet. You have so to close the browser
to apply the change. Then, you will have to open a new browser
with the new IP address in the address bar to access the applet
again!

 Subnet mask: useful only for special UDP directed broadcast.

28 / 209

3. FMod-I2C485ECMOT DB 48/10

Operating conditions

 Operating temperature -20…+85°C
 Supply voltage Vcc 15-48 VDC
 Supply current max ±10 A
 Power consumption 78mA when idle @ Vcc 15 V
 52mA when idle @ Vcc 24 V
 44mA when idle @ Vcc 48 V
 Input capacity (Power +,-) ~2000uF, ~15mOhm ESR
 Limit-switch voltage supply 5.0 V (max 2 x 50 mA)
 Max A&B encoder signal 250 kHz = 1Mio pulses/s (CPRx4)
 Output voltage 92% Vcc @ 35kHz PWM
 85% Vcc @ 69kHz PWM
 Max. output current 15 A
 Continuous OUTPUT current Brushed Motor 10A (Tamb. 25°C)
 (Pwr Mosfet thermal limitation) Brushless Motor 8A (Tamb. 25°C)

Overview

Applications

The FMod-I2C485ECMOT DB 48/10 is a motion control and driver device
for DC motors, either with brushes or brushless (EC) with hall sensors. It is
particularly interesting because of its small size and quality of the regulation
system.

It can be accessed through an I2C or an RS485 connection. Access through
I2C can be made by the user or with the help of another FiveCo module,
FMod-TCP DB or FMod-TCP Box 2 which are bridges between TCP/IP and
I2C. Access through RS485 is easily made with a serial adapter USB-RS485
connected to the computer or from a motherboard. Refer to the chapter
“I2C Interface” and “RS485 Interface” to have more information on how to
communicate with the board.

The device connections and dimensions are described on the following
pages.

29 / 209

Hardware description

Physical Dimensions [mm]

H-Bridge

Microcontroller

Enable

I2C address

RS485 interface

I2C interface IN/OUT

2 limits inputs

5V supply out
Power brake
Power input Vdd (<48V)

J1 (Pin 1)

Encoder inputs

Halls inputs
5V supply out
Motor outputs

J2 (Pin 1)

30 / 209

Connector J1 pinning
The Pad 0 near pin 1 of J1 should be connected to the shield

1 Power + (in)
2 Power + (in)
3 Power + (in)
4 Power Brake (out)
5 Power Brake (out)
6 Power Brake (out)
7 Power – (in)
8 Power – (in)
9 Power – (in)
10 Logic GND (in)
11 Logic +5v (out)
12 Limit 1 or home (in)
13 Limit 2 (in)
14 SDA (I2C data, in/out)
15 SCL (I2C clock, in/out)
16 RS485+ (in/out)
17 RS485- (in/out)
18 I2C/RS485 Address selection bit 0 (in)
19 Address bit 1 (in)
20 Address bit 2 (in)
21 Address bit 3 (in)
22 Address bit 4 (in)
23 Address bit 5 (in)
24 Address bit 6 (in) or IO 1 (in/out) see OPTIONS.13
25 RS485 Address bit 7 (in) or IO 2 (in/out)
26 Enable (in)

Notes:
 The device’s logic power supply is internally generated by the card

from the DC supply. It can be used externally to power limits, hall
sensors and encoder to a maximum of 300mA in total on
connectors J1 and J2. The DC power supply (15-48v) for the motor
has to be connected to pins 1,2,3 and 7,8,9.

 When the dissipation is activated, the 3 Power Brake pins (4,5 and
6) are tied to GND through a transistor. Therefore if a power
dissipating element (e.g. a power resistor) is connected between
Power + and Power Brake pins, it dissipates the extra energy.

31 / 209

Connector J2 pinning
1 EC1 (out)
2 EC1 (out)
3 EC1 (out)
4 EC2 / DC- (out)
5 EC2 / DC- (out)
6 EC2 / DC- (out)
7 EC3 / DC+ (out)
8 EC3 / DC+ (out)
9 EC3 / DC+ (out)
10 Logic +5v (out)
11 Logic GND (in)
12 Hall 1 (in)
13 Hall 2 (in)
14 Hall 3 (in)
15 Encoder channel A inverted (in)
16 Encoder channel A (in)
17 Encoder channel B inverted (in)
18 Encoder channel B (in)
19 Encoder Index inverted (in)
20 Encoder Index (in)

Notes:
 The device’s logic power supply is internally generated by the card

from the DC supply. It can be used externally to power limits, hall
sensors and encoder to a maximum of 300mA in total on
connectors J1 and J2.

32 / 209

Hardware

Power supply

[15-48V] with the peak current equal to the nominal current of the motor
on connector J1 (min 1A). E.g. for a motor with a constant of 24V and 2A,
choose a power supply of 24V 2A. Don’t worry about the motor start
current you will see on the datasheet, it is electronically limited by the
device.

WARNING: When braking (deceleration), the 4Q device regenerates the
inertial energy to electricity, so the voltage between Power+ and Power-
pins could be higher than the power supply. Dissipation of the braking
energy can be made through the “Power brake” pins. Refer to the next
chapter “Dissipation” to have more information on this feature.

If no power dissipating element is connected between “Power Brake” and
“Power+”, the device will accept overrides if below 50V, or if between 51-
53V inside the clamping diode, it will temporarily accept 3-5A.
If your system does not accept overrides, you need to add a dissipating
element between Power Brake and Power+ pins.

The power supply has to be able to manage reverse power when braking
(power generation) on connector J1 Power+ and Power-.

> Below 12.0V, the driver is automatically set to Brake mode.
> Over 56V, the driver is automatically set to DriverOpen mode.

Dissipation

When the dissipation is activated, the 3 Power Brake pins (4,5 and 6) are
tied to GND through a transistor. Therefore if a power dissipating element
(e.g. a power resistor) is connected between Power + and Power Brake
pins, it dissipates the extra energy.
The dissipation is obviously dependent on the resistor value, if the user
wants to dissipate 2 A at 24V, the value of the power resistor should be 12
ohms.
In the figure below, a setup with an FMod-I2C485ECMOT DB 48/10 with its
dissipation resistor connected to the PowerBrake pins.

33 / 209

The dissipation is activated when the voltage measured by the controller
exceeds a certain threshold. This threshold could be set by the user with the
register DISSIPATIONVOLTAGE (0x2F), or use the automatic feature setting
the OPTIONS.16 bit (0x2C).
When the automatic threshold is used, the dissipation voltage threshold
stabilizes 3 V above the actual average of the measured voltage. When a too
abrupt rise on the measured voltage occurs, the dissipation is activated while
the threshold is still updated with the current average. The following figure
shows this mechanism.

Warning:
If a fixed dissipation voltage is used, it will not stop dissipating until the
measured voltage goes below the specified threshold.

See register description OPTIONS (0x2C) and DISSIPATIONVOLTAGE (0x2F)
for more information.

Dissipation resistor

[V]

Time [ms]

Dissipation threshold

Voltage

Dissipation is active

Auto dissipation explained

34 / 209

Motor type

The device drives DC brushed motors as well as brushless motors with hall
sensors, (0.1-10A, 3-48V).
FMod-I2C485ECMOT DB 48/10 automatically detects whether the motor is
brushed or brushless.

If speed control or positioning is needed, use A&B (&Index) channel
quadrature incremental encoders with a differential line driver (EIA/TIA/RS
422). The controller is also compliant with non-differential encoder lines.
Each logical change of A or B channels will define a pulse.
If the encoder is defined in cycles (or counts) per revolution (CPR), you can
multiply the cycles by 4 to obtain the result in pulses (PPR).

For example: an encoder of 500 CPR represents 2000 PPR in the controller.

With brushless motors only, it is possible to configure the device to use the
hall sensors (6 states/cycle) for speed control and positioning, but the
resolution is poor.

35 / 209

Brushed motor (DC)

Open Loop only, no regulation because
no feedback!

Brushed motor (DC) with encoder

Full regulation: speed or positioning.

Brushless motor (EC)

Full regulation: speed or positioning with
hall sensors as encoders.
Poor regulation due to the few states of
hall sensors.
(see OPTIONS register (0x2C) to set this
feature)

Brushless motor (EC) with encoder

Full regulation: speed or positioning

10 lines
Quadrature encoder
with differential line
driver
A,/A,B,/B,(I,/I),+5V,0V
Also compliant with
non-differential encoder
lines

2 lines
Power motor lines +, -

2 lines
Power motor lines +, -

3 lines
Power motor lines
phases 1,2,3

5 lines
Hall sensor lines
hall 1,2,3 , +5V,0V

10 lines
Quadrature encoder
with differential line
driver
A,/A,B,/B,(I,/I),+5V,0V
Also compliant with
non-differential encoder
lines

3 lines
Power motor lines
phases 1,2,3

5 lines
Hall sensors
hall 1,2,3 , +5V,0V

36 / 209

How to connect hall sensors

Different motor manufacturers do not have the same
enumeration for hall sensors 1,2,3 and motor phases
(windings) 1,2,3.

Here is a method to find the corresponding connection
between the brushless motor and the device.

Connect phases (windings) 1,2,3 (U,V,W=A,B,C) to the
FMod-I2C485ECMOT DB 48/10 motor connector J2,
through pins EC1, EC2, EC3.

Connect the +5V and GND hall sensors to the J2
connector (Logic +5V and Logic GND pins).

Connect the hall sensor lines 1,2,3 to the J2 connector.

Power the device, connect through RS485 or I2C to the
board, set the Enable pin (connector J1) to high, set the
REGULATIONMODE register to “Open Loop”, set INPUT
to 48’000 (~3/4 full PWM).
If the motor turns correctly, you have done it!

If the motor does not turn, set REGULATIONMODE to
“Driver Open”, and switch the hall sensor lines: Hall1
Hall2, Hall2Hall3, Hall3 Hall1.
Set REGULATIONMODE to “Open Loop”, set INPUT to
48’000.
If the motor turns correctly, you have done it!

If the motor does not turn, do the same manipulation one
more time: switch the hall sensor lines: Hall1Hall2,
Hall2Hall3, Hall3 Hall1…
Set REGULATIONMODE to “Open Loop”, set INPUT to
48’000.
If the motor turns correctly, you have done it!

If it still isn’t working, unlucky!
Swap lines Hall 1 Hall 2
Test it and if it still doesn’t work, switch the hall sensor
lines: Hall1 Hall2, Hall2Hall3, Hall3 Hall 1, test
again, and switch one more time.
If it still doesn’t work, the motor or device is most likely
damaged.

37 / 209

Enable pin

This feature is for security purposes and stops the output power (connector
J1).

The voltage ranging between [4.2V; 48V] on the Enable pin allows the driver
to work normally (regulation on motor).

If the voltage on the Enable pin drops below 4V, the driver (motor) is set to
“Brake” mode.

When the Enable pin goes back to high [4.2V; 48V], the user needs to
change the mode from “Brake” back to the required one.

Limit Switch: stop, reference, stopper type

Both Limit1 and Limit2 are inputs lines with a Schmitt trigger (logic low : [0-
1V], logic high [4-5V]).

5 VDC sensors can be powered from the connector J1, pins Logic +5v and
Logic GND. Open collector (NPN,PNP) and open drain (N,P) output stage
sensors can be used.

Micro switches or reed sensors can also be used, but take a special care to
the rebounds of the limit signal (typ <10ms).

WARNING: Both Limit Switch sensors (L1 & L2) must be of the same type
(NPN,N or PNP,P) because of the internal pull-up or pull-down resistor
selection.

I2C/RS485 address selection and I/Os

The I2C/RS485 address selection is made by hardware connection on
connector J1; 7 bits for I2C address and 8 bits for RS485 address. Each line
needs to be connected to +5v logic (1) or logic ground (0). Do not leave
any pin of address floating, except when I/Os are used on the 2 pins
I2C/RS485 Address selection [6-7] (J1, pin 24-25).

The range for I2C address is [0x08;0x77] in hexadecimal or [8;120] in
decimal. If the address set in hardware is out of this range, the default
address is 0x55 (85).
The range for RS485 address is [0x00;0xFF] in hexadecimal or [0;255] in
decimal.

As example, if you want to set one FMod-I2C485ECMOT DB 48/10 to
address 40 (0x28), convert 40 (decimal) in binary code (b'00101000'); this
bits are the values to be set to the corresponding pins of J1 "I2C/RS485
Address selection 7-0".

38 / 209

The I2C and RS485 addresses can be different if the hardware address is out
of the I2C address range. For example if the address is set to 202 (0xCA),
the I2C address will be 85 (0x55 default address) and the RS485 address will
be 202 (0xCA).

When the OPTIONS.13 bit is set, the 2 most significant bits are used as I/Os
(I2C/RS485 Address selection [7;6]). If the I/Os are used, the range for I2C
address is [0x08;0x3F] in hexadecimal or [8;63] in decimal. The range for
RS485 address in that situation is [0x00;0x3F] in hexademical or [0;63] in
decimal.

The voltage range is [0;5V] for inputs and outputs. Refer to registers
description OPTIONS (bit 13), IOCFG and IOSTATE to have more
informations on the usage of the I/Os.

39 / 209

4. FMod-I2CDCMOT DB 48/1.5 & SLP 48/1

Operating conditions

FMod-I2CDCMOT DB 48/1.5

 Operating temperature -20…+85°C
 Supply voltage Vcc 10-48 VDC
 Supply current max ±1.5 A
 Logic consumption supply max 50mA @ 5V logic

20mA when idle @ 5V logic
 Input capacity (Power +,-) ~220uF, ~50mOhm ESR
 Max A&B encoder signal 250 kHz = 1Mio pulses/s (CPRx4)
 Output voltage Vcc - 0.7 x Output current
 Max. output current 2 A
 Continuous OUTPUT current 1.5 A (-20…+60°C)

 (Pwr Mosfet thermal limitation) 1.3 A (+60°C…+85°C)

FMod-I2CDCMOT SLP 48/1

 Operating temperature -20…+85°C
 Supply voltage Vcc 10-48 VDC
 Supply current max ±1 A
 Logic consumption supply max 50mA @ 5V logic

<1µA when standby @ 5V logic
(50nA at 25°C)

 Input capacity (Power +,-) ~15uF, ~10mOhm ESR
 Max A&B encoder signal 500 kHz = 2Mio pulses/s (CPRx4)
 Output voltage Vcc - 0.7 x Output current
 Max. output current 2 A
 Continuous OUTPUT current 1.0 A (-20…+85°C)

 (Pwr Mosfet thermal limitation)

40 / 209

Overview

Applications

The FMod-I2CDCMOT DB 48/1.5 and FMod-I2CDCMOT SLP 48/1 are
motion control and driver boards for DC motors (with brushes). They are
particularly interesting because of their small size, the quality of its regulation
and the power that can be delivered by this card; 70W continuous for the
DB version and 48W continuous for the SLP version. With its world known
I2C data-bus communication device, more than 100 I2C devices can be
connected to the same bus. Access through I2C can be made by the user or
with the help of another FiveCo module, FMod-TCP DB or FMod-TCP Box
2 which are bridges between TCP/IP and I2C. Refer to the chapter “I2C
Interface” to have more information on how to communicate with the
board.

The daughter board version (FMod-I2CDCMOT DB 48/1.5), dedicated to
production, can be easily plugged on a motherboard without any cable, just
with its 20 pins (2.54mm space) connector.

The SLP version (“SLP” stands for Soldered Low Power) can be easily
soldered to a motherboard without any cables through its 22+2 plated
holes on board edge (1.27mm spacing). Another way is to solder a 1.27 mm
spacing male connector to the board, making it easily pluggable to a
dedicated motherboard.

Compared to the FMod-I2CDCMOT DB 48/1.5, the FMOD-I2CDCMOT
SLP 48/1 offers a smaller power output (48W) but adds the low power
mode, 1µA maximum current consumption on logic 5V and power supply.
At ambient temperature, this value drops as low as 50nA on each supply.

41 / 209

Hardware description of FMod-I2CDCMOT DB 48/1.5

Physical Dimensions [mm]

42 / 209

Connector J1 pinning
The Pad 0 near pin 1 of J1 should be connected to the shield

1 Motor + (out)
2 Motor – (out)
3 Encoder channel A (in)
4 Encoder channel B (in)
5 Power + (in)
6 Power – (in)
7 Logic +5v (in)
8 Logic GND (in)
9 Limit 1 or home (in)
10 Limit 2 (in)
11 SDA (I2C data, in/out)
12 SCL (I2C clock, in/out)
13 I2C Address selection bit 0 (in)
14 Address bit 1 (in)
15 Address bit 2 (in)
16 Address bit 3 (in)
17 Address bit 4 (in)
18 Address bit 5 (in) or IO 1 (in/out) see OPTIONS.13
19 Address bit 6 (in) or IO 2 (in/out)
20 #Reset logic (in or floating), reset is active low, internally pull-up

Notes:
 The device’s logic power supply (electronics and processor) is on pin

7 (Logic +5V) and 8 (Logic GND) and must be applied externally. A
second power supply (10-48v) for the motor has to be connected
to pins 5 and 6.

43 / 209

Hardware description of FMod-I2CDCMOT SLP 48/1

Physical Dimensions [mm]

Footprint

In red are the recommended pads footprints on the motherboard.

Motor outputs
Power input Vdd (<48V)
Encoder channel A-B

2 limits inputs

5V supply IN

5V encoder OUT

I2C interface IN/OUT
I2C address

2 Digital IOs

J2 (Pin1)

J3 SIL-2

GND

J4 SIL-2
GND

Microcontroller

H-Bridge driver

Pin 1

44 / 209

Connector J2 pinning
1 Digital IO 1 (in/out)
2 Digital IO 2 (in/out)
3 I2C Address selection bit 0 (in)
4 I2C Address selection bit 1 (in)
5 I2C Address selection bit 2 (in)
6 I2C Address selection bit 3 (in)
7 I2C Address selection bit 4 (in)
8 I2C Address selection bit 5 (in)
9 I2C Address selection bit 6 (in)
10 SDA (I2C data, in/out)
11 SCL (I2C clock, in/out)
12 Encoder +5V (out)
13 Logic +5V (in)
14 Logic GND (in)
15 Limit 2 (in)
16 Limit 1 or home (in)
17 Encoder channel B (in)
18 Encoder channel A (in)
19 Power – (in)
20 Power + (in)
21 Motor – (out)
22 Motor + (out)

Notes:
 The device’s logic power supply (electronics and processor) is on pin

13 (Logic +5V) and 14 (Logic GND) and must be applied externally.
A second power supply (10-48v) for the motor has to be connected
to pins 20 and 19.

 The encoder’s power supply is an output of the board and must be
connected to pins 12 (Encoder +5V) and 14 (Logic GND). It is an
output of the board since it is disabled in ultra-low power mode;
therefore it must not be tied with the general Logic +5V.

45 / 209

Hardware

Power supply

1. VCC (+5V) used for the electronics and processor must be applied
on the Logic 5V and Logic GND pins. (See details on chapter
"Connector J2 pinning", under their respective Hardware
descriptions).

2. 10-48 V with the peak current equal to the nominal current of the
motor on the power inputs.

E.g. for a motor with a constant of 24V and 1A, choose a power supply of
24V 1A. Don’t worry about the motor start current you will see on the
datasheet, it is electronically limited by the device.

!!! Both power supplies must be connected to the same ground. !!!

WARNING: When braking (deceleration), the 4Q device regenerates the
inertial energy to electricity, so the voltage between Power+ and Power-
pins could be higher than the power supply. The device will accept overrides
if below 50V, or if between 51-53V inside the clamping diode, it will
temporarily accept 3-5A. If your system does not accept overrides, you need
to add an external dissipation system.

Therefore the power supply must manage backward power when braking
(power generation), e.g. over voltage protection.

Under 9.0 V driver is automatically put in Brake-Mode.
Over 54 V driver is automatically put in DriverOpen-Mode.

Power Supply FMod-I2CDCMOT DB or SLP
N°1

24V+
0

5V+
0

(2)

(1)

N°2

N°3

46 / 209

Motor type

DC brushed motors (current 0.1-1.5A for DB version, current 0.1-1A for
SLP version, voltage 10-48V).
With A&B channel quadrature encoders. If the encoder has differential lines,
use only the non-inverted outputs A and B.
Each logic change of A or B channel defines a pulse.
If the encoder is defined in cycles (or counts) per revolution (CPR), you can
multiply by 4 the cycles to obtain the result in pulses (PPR).

Example: with an encoder of 500 CPR, it represents 2000 PPR in the
controller.

Brushed motor (DC)

Open Loop only, no regulation because
no feedback!

Brushed motor (DC) with encoder

Full regulation: speed or positioning.

Limit-Switch: stop, reference, stopper type

Both Limit1 and Limit2 are inputs lines with a Schmitt trigger (logic low : [0-
1V], logic high [4-5V]).

5 VDC sensors must be used; for example, open collector (NPN,PNP) and
open drain (N,P) output stage sensors.

Micro switches or reed sensors can also be used, but take a special care to
the rebounds of the limit signal (typ <10ms).

WARNING:
Both Limit-switch sensors (L1 & L2) must be of the same type (NPN,N or
PNP,P), because of the internal pull-up or pull-down resistor selection.

6 lines
Quadrature encoder
A, B, +5V encoder, 0V
(+2 not connected)

2 lines
Power motor lines +, -

2 lines
Power motor lines +, -

47 / 209

I2C address selection and I/Os

The I2C address selection is made by hardware connection on connector J1
for DB version and J2 for SLP version; 7 bits for I2C address. Each line needs
to be connected to +5v logic (1) or logic ground (0). Do not leave any pin
of address floating, except when I/Os are used on the 2 pins I2C Address
selection [5-6] (only for FMod-I2CDCMOT DB 48/1.5).

The range for I2C address is [0x08;0x77] in hexadecimal or [8;120] in
decimal. If the address set in hardware is out of this range, the default
address is 0x55 (85).

As example, if you want to set one FMod-I2CDCMOT DB 48/1.5 to address
40 (0x28), convert 40 (decimal) in binary code (b'00101000'); the 7 least
significant bits (0101000) are the values to be set to the corresponding
pins of J1 (DB) or J2 (SLP) "I2C Address selection 6-0".

Only for FMod-I2CDCMOT DB 48/1.5, when the OPTIONS.13 bit is set, the
2 most significant bits of the address are used as I/Os (I2C Address selection
[6;5]). If the I/Os are used, the range for I2C address is [0x08;0x1F] in
hexadecimal or [8;31] in decimal.

The voltage range is [0;5V] for inputs and outputs. Refer to registers
description OPTIONS (bit 13), IOCFG and IOSTATE to have more
informations on the usage of the I/Os.

48 / 209

5. FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Operating conditions

FMod-I2CSTEPMOT SLP 35/1

 Operating temperature -20…+85°C
 Supply voltage Vcc 9-35 VDC
 Supply current max ±1 A
 Logic consumption supply max 50mA @ 5V logic

<1µA when standby @ 5V logic
(50nA at 25°C)

 Input capacity (Power +,-) ~15uF, ~10mOhm ESR
 Output voltage Vcc
 Max. output current 1.5 A
 Continuous OUTPUT current 1.0 A (-20…+85°C)

 (Pwr Mosfet thermal limitation)

FMod-I2CSTEPMOT SLP 35/0.1

 Operating temperature -20…+85°C
 Supply voltage Vcc 9-35 VDC
 Supply current max ±150 mA
 Logic consumption supply max 50mA @ 5V logic

<1µA when standby @ 5V logic
(50nA at 25°C)

 Input capacity (Power +,-) ~15uF, ~10mOhm ESR
 Output voltage Vcc
 Max. output current 150 mA
 Continuous OUTPUT current 150 mA (-20…+85°C)
 (Pwr Mosfet thermal limitation)

49 / 209

Overview

Applications

The FMod-I2CSTEPMOT SLP 35/1 & 35/0.1 are motion control and driver
boards for 2 phases stepper motors. They are low cost and very small
control device with ¼ step motion control for position and speed control
using trapezoidal trajectory profile. Ultra low power consumption in stand-
by mode, typically less than 1µA makes them ideal for portable and compact
applications.

With its world known I2C data-bus communication device, more than 100
I2C devices can be connected to the same bus. Access through I2C can be
made by the user or with the help of another FiveCo module, FMod-TCP
DB or FMod-TCP Box 2 which are bridges between TCP/IP and I2C. Refer
to the chapter “I2C Interface” to have more information on how to
communicate with the board.

The boards are dedicated to production; they can be easily soldered to a
motherboard without any cables through its 20+2 plated holes on board
edge (1.27mm spacing). Another way is to solder a 1.27 mm spacing male
connector to the board, making it easily pluggable to a dedicated
motherboard.

Hardware description of FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

I2C address

I2C interface IN/OUT
2 limits inputs

Logic input (5V)

Power input Vdd (<35V)
Motor outputs
J2 (Pin1)

J4 SIL-2

GND

J3 SIL-2
GND

Microcontroller

H-Bridge drivers

50 / 209

Physical Dimensions [mm]

Footprint

In red are the recommended pads footprint on the motherboard.

Pin 1

51 / 209

 Connector J2 pinning
1 Motor phase 1 + (out)
2 Motor phase 1 – (out)
3 Motor phase 2 – (out)
4 Motor phase 2 + (out)
5 Power + (in)
6 Power – (in)
7 Logic +5V (in)
8 Logic GND (in)
9 Limit 1 or home (in)
10 Limit 2 (in)
11 SDA (I2C data, in/out)
12 SCL (I2C clock, in/out)
13 I2C Address selection bit 0 (in)
14 I2C Address selection bit 1 (in)
15 I2C Address selection bit 2 (in)
16 I2C Address selection bit 3 (in)
17 I2C Address selection bit 4 (in)
18 I2C Address selection bit 5 (in)
19 I2C Address selection bit 6 (in)
20 #Reset logic (in or floating), reset is active low, internally pull-up

Notes:
 The device’s logic power supply (electronics and processor) is on pin

7 (Logic +5V) and 8 (Logic GND) and must be applied externally. A
second power supply (10-35V) for the motor has to be connected
to pins 5 and 6.

52 / 209

Hardware

Power supply

1. VCC (+5V) used for the electronics and processor must be applied
on the Logic 5V and Logic GND pins. (See details on chapter
"Connector J2 pinning", under the Hardware description).

2. 10-35 V with the peak current equal to the nominal current of the
motor on the power inputs.

E.g. for a motor with a constant of 24V and 1A, choose a power supply of
24V 1A. Although a higher power supply current limit is not a problem.
Don’t worry about the motor start current you will see on the datasheet, it
is electronically limited by the device.

!!! Both power supplies must be connected to the same ground. !!!

WARNING: When braking (deceleration), the 4Q device regenerates the
inertial energy to electricity, so the voltage between Power+ and Power-
pins could be higher than the power supply. The device will accept overrides
if below 36V, or if between 36-38V inside the clamping diode, it will
temporarily accept 3-5A. If your system does not accept overrides, you need
to add an external dissipation system.

Therefore the power supply must manage backward power when braking
(power generation), e.g. over voltage protection.

Under 9.0 V driver is automatically put in DriverOpen-Mode.
Over 38 V driver is automatically put in DriverOpen-Mode.

Power Supply FMod-I2CSTEPMOT SLP
N°1

24V+
0

5V+
0

(2)

(1)

N°2

N°3

53 / 209

Motor type

2 phases stepper motors:

 Nominal current [5mA-150mA] for 35/0.1 version

 Nominal current [0.1-1A] for 35/1 version,

 Nominal voltage [2V-35V]

Often the stepper motor manufacturers state that the nominal voltage of
the motor is the nominal current * phase resistance. This is true only if the
stepper motor is driven directly by the power supply (referred as voltage
driven). Here we use current chopper drive, therefore the nominal voltage
does not have to be respected.

If an application requires low speed of the motor, better choose a high
nominal voltage, current consumption will be lower.
Instead if an application requires high speed of the motor, better choose a
low nominal voltage, but current consumption will be higher. With a lower
nominal voltage, the counter-electromotive force is lower and more voltage
is left for the motor torque at high speed.

Limit-Switch: stop, reference, stopper type

Both Limit1 and Limit2 are inputs lines with a Schmitt trigger (logic low : [0-
1V], logic high [4-5V]).

5 VDC sensors must be used; for example, open collector (NPN,PNP) and
open drain (N,P) output stage sensors.

Micro switches or reed sensors can also be used, but take a special care to
the rebounds of the limit signal (typ <10ms).

WARNING:
Both Limit-switch sensors (L1 & L2) must be of the same type (NPN,N or
PNP,P), because of the internal pull-up or pull-down resistor selection.

I2C address selection

The I2C address selection is made by hardware connection on connector J2;
7 bits for I2C address. Each line needs to be connected to +5v logic (1) or
logic ground (0). Do not leave any pin of address floating!

The range for I2C address is [0x08;0x77] in hexadecimal or [8;120] in
decimal. If the address set in hardware is out of this range, the default
address is 0x55 (85).

As example, if you want to set one FMod-I2CSTEPMOT SLP 35/1 to
address 40 (0x28), convert 40 (decimal) in binary code (b'00101000'); the 7
least significant bits (0101000) are the values to be set to the
corresponding pins of J2 "I2C Address selection 6-0".

54 / 209

Position and phases synchronisation

Overview

With OPTIONS.19 and OPTIONS.20 bits (0x2C), the user can decide to
synchronize the position with the actual phases of the stepper motor. This
means that the user has the possibility to know exactly on which phases the
motor is currently driven.

If the user wants to send its motor to positions that are magnetically stable,
which means that only one phase has current flowing through its winding.
You could see in documents from the motor manufacturer that the term
“full-step” is used when both phases are activated, but in this document “full-
step” refers to position that are magnetically stable as explained above. The
advantage is that even if the card is powered down, the motor will not
move until the holding torque of the motor is not countered.

To achieve this, the bit OPTIONS.19 must be set to ‘1’ which activates the
synchronisation between the POSITION (0x26) register and the phases. Then
the synchronisation can be made on 1 full-step or 4 full-steps (the 4 full-steps
synchronisation will be explained later); setting the bit OPTIONS.20 to ‘1’ =>
1 full-step synchronisation, setting the bit OPTIONS.20 to ‘0’ => 4 full-steps
synchronisations. In this example, the 1 full-step synchronisation is chosen.

With this configuration, if the INPUT (0x21) is a multiple of 256 µpulses (1
µpulse = 1/256 of a full-step), the motor will be moving with ¼ step
increment towards its goal position where it will stop at a magnetically stable
position.
If the user does not want to check if the INPUT (0x21) is a multiple of 256
or if the INPUT is computed by another microcontroller, bit OPTIONS.21 can
be used to automatically make the motor stop on full step (lowest byte of
the INPUT is masked, hence equals to 0x00). Activate this feature by setting
bit OPTIONS.21 to ‘1’.

4 full-steps synchronisation

As explained above, setting the bit OPTIONS.20 to ‘0’ activates the 4 full-
steps synchronisation instead of 1 full-step. This feature is useful when
homing is done with a mechanical stopper (e.g. Homing method 12:
 Move of Start Input) and the motor has few steps/turn and a small (or
no) reduction with a gearhead. There are 4 full-steps (magnetically stable
position) in one cycle of a 2 phases stepper motor; phase 2 positive, phase 1
positive, phase 2 negative and phase 1 negative.
The figure below explains the mechanism where a misalignment can appear
if the 4 full-steps synchronisation is not used.

55 / 209

In this situation, the mechanical stopper is located close to a full-step (phase
1-). If the user asks the motor to go further the mechanical stopper with no
synchronisation on the POSITION and the INPUT, the motor can possibly
stops on the phase 1+, therefore the motor will sometime stay against the
mechanical stopper, or go backwards towards the other phase 1+. This can
lead to a misalignment of 4 full-steps when performing Homing.

To counter this, when needed by the application, the user can set the bit
OPTIONS.20 to ‘0’, activating the 4 full-steps synchronisation as well as the
OPTIONS.19 set to ‘1’(position and phase synch enabled).
In the situation depicted above, the user will set the HOMINGSTARTINPUT
(0x47) to have a rest of 768 µpulses when divided by 1024
(HOMINGSTARTINPUT = 1024*n + 768) to be sure that the motor will
always stops at the same desired location. The table below gives the
corresponding phase in function of the full-step position and the bit
OPTIONS.1 (invert direction).

 Bit OPTIONS.1 = 0
(Invert direction = 0)

Bit OPTIONS.1 = 1
(Invert direction =1)

Rest
[µpulses]

POSITION Active phase Active phase

0 -1024
0
1024 etc.

Phase 2+ Phase 2+

256 -768
256
1280 etc.

Phase 1+ Phase 1-

512 -512
512
1536 etc.

Phase 2- Phase 2-

768 -256
768
1792 etc.

Phase 1- Phase 1+

M

1- 2+ 1+ 2- 1- 2+ 1+ 2-

Phases

Start Input+

56 / 209

After the Homing is finished, the user can disable the synchronisation if it is
not needed anymore.

Consequence on modifying POSITION

When the POSITION (0x26) register is written to (by the user or after
completed Homing), the synchronisation has to be kept; therefore the last 8
bits (1 full-step synch) or the last 10 bits (4 full-steps synch) of POSITION will
keep their previous value.

For example the motor is actually on the first ¼ step after Phase 2- (with
OPTIONS.1 = 0), it means that its position has the rest, when divided by
1024, of 512 + 256/4 µpulses = 576 µpulses (refer to the table in the
previous chapter for more information). Let’s assume that the POSITION is
92’736 µpulses (1024*90+576) and the user (or Homing) sets the POSITION
to be ‘0’; if the 1 full-step synch is enabled, the POSITION will be 64 µpulses
and if the 4 full-steps synch is enabled, the POSITION will be 576 µpulses
after the register is written to ‘0’.

57 / 209

6. Ethernet Inter face

General

The board includes an Ethernet port (RJ45 – connector J7) which allows
access to all the module's parameters (registers) through a TCP or UDP
connection.

Here you will find a small comparison table for these two protocols (non
exhaustive):

Two ports are available using the TCP protocol:

 Port #80 HTTP communication
 Port #8010 Access to the control port

Only one port is accessible through the UDP protocol:

 Port #7010 Access to the control port

You will find a detailed description of the different ports in the following
pages.

Note: The board allows for up to 4 simultaneous TCP connections. That means
for example, that 4 users can connect to the #80 port to view the web page, or
4 users can be connected to the #8010 port and control the I/Os, or even that
two can view the page and two can control the I/Os, etc. With the UDP protocol,
there are no limitations to the number of users who can connect.

Features UDP TCP

Checksum (data integrity) YES YES

Multiport (data multiplexing) YES YES

Flow control NO YES

Acknowledge data NO YES

58 / 209

TCP-HTTP port (TCP # 80)

This port is used to access the web page stored on the module.

The user can simply access that port and ask for a particular page, using a
standard web browser (IE, Mozilla, Safari, etc.), and enter the card’s (IP)
address:

E.g. Type http://169.254.5.5 in the address bar of the browser and the
“index.htm” page will be loaded.

Control ports (TCP # 8010) & (UDP #7010)

This port is used to access the registers described in the “Register
management” chapter of this manual.

Note: If you are planning to configure all the registers using only the onboard
web page, you can skip this section and go to the Java-Applet section. (The Java-
Applet also uses this port to read and write the different settings).

TCP/IP works in big endian: most significant byte first, followed by least
significant byte(s). Access is made by sending a packet that follows a simple
(6 byte header) protocol.

Structure of each packet:

1) Function ID (2 bytes) Code of the function to be executed.

2) Transaction ID (2 bytes) Number that defines this packet
3) Length of the parameters (2 bytes) Number of parameters + data bytes
4) Parameters (X byte) Parameters + data
5) Checksum (2 bytes) Control sum of the packet bytes

Function ID
The specific code for each function can be found on the next page of this
manual.

Transaction ID
The user defines the values of the Transaction ID. Normally, each
packet/transaction (communication request) should have a different ID (even
though it is not mandatory). When the FMod-IPECMOT 48/10 receives a
command/packet, it sends back an answer (at each request). This answer
contains the same Transaction ID as the corresponding command previously
sent. In that way, the user is able to confirm that each command has been
executed.

Length of the parameters
This 2-byte value corresponds to the length (in bytes) of the next section of
the packet (parameters only).

59 / 209

Parameters
This part of the packet contains all the parameters (mainly the data that is
sent).

Checksum
This 2-byte value is the checksum of all the bytes of the packet (more
information in the following pages).

READ register value command(s).

Byte# Number of bits Example

0x00 Read (0x0021) 16 bits 0x0021

0x02 TransactionID 16 bits 0x1B34

0x04 Number of registers to
read (X)

16 bits 0x0001

0x06 X * register addresses X * 8 bits 0x02
0x06+X Checksum 16 bits 0x…

The maximum number of registers that can be read at one time is about 30.
The answer sequence should not be greater than 180 bytes. If the number
of registers is too high, the FMod-IPECMOT 48/10 will answer only with the
value of some of them.

The module answers with the following sequence:

Byte# Number of bits Example

0x00 Read Answer (0x0023) 16 bits 0x0023

0x02 TransactionID (same as
demand)

16 bits 0x1B34

0x04 Number of bytes in answer 16 bits 0x0019

0x06 Register address 8 bits 0x02

… Register value 8–128 bits (16B) 0x12345

The two previous entries are replicated for each register that needs
to be read.

… Checksum 16 bits 0x…

60 / 209

WRITE register value command(s).

Byte# Number of bits Example

0x00 Write (0x0022) 16 bits 0x0022

0x02 TransactionID 16 bits 0x1B34

0x04 Number of bytes in
command

16 bits 0x0003

0x06 Register Addresses 8 bits 0x02

0x07 Register value 8 – 128 bits 0x1234

The two previous entries are replicated for each register that needs
to be write.

… Checksum 16 bits 0x…

The max length of this sequence is 180 bytes.

The module answers with the following sequence:

Byte# Number of bits Example

0x00 Write Answer (0x0024) 16 bits 0x0024

0x02 TransactionID (same as
demand)

16 bits 0x1B34

0x04 0x0000 16 bits 0x0000
0x06 Checksum 16 bits 0x…

Easy IP address config (UDP # 7010)

A really useful feature of the UDP port #7010 is the "Easy IP config".

The user who wants to design their own software can use this feature to go
through a "quick start/install" method. Indeed, as this protocol uses a
broadcast UDP packet, even if the device is not in the same subnet, it should
receive its new IP address and subnet mask.

Procedure:
Send a UDP broadcast message (using a local or direct broadcast IP address)
to your network (inside which the FMod-IPECMOT 48/10 is connected)
with the following command:

Byte# Number of bits Example

0x00 Change IP fct (0x002A) 16 bits 0x002A

0x02 TransactionID 16 bits 0x0000

0x04 Length of params (0x000E) 16 bits 0x000E
0x06 Device Mac address 6 bytes 0x0050C2308101

0x0C Device new IP address 4 bytes 0xC0A81064

0x10 Device new SubnetMask 4 bytes 0xFFFF0000

0x14 Checksum 16 bits 0x…

61 / 209

If the FMod-IPECMOT 48/10 recognizes its MAC address, it will answer this
command with a simple acknowledgement and change its IP address and
subnet mask IF NO TCP CONNECTION EXISTS TO THE BOARD.

Byte# Number of bits Example

0x00 Change IP fct ack (0x002B) 16 bits 0x002B
0x02 TransactionID 16 bits 0x0000

0x04 Length of params (0x0000) 16 bits 0x0000

0x14 Checksum 16 bits 0x…

62 / 209

Checksum calculation

This checksum is the same as the IP checksum.

Definition: The sum of 1’s complement (=all bits inverted) all 16-bit words
of the whole message (FiveCo packet) except checksum bytes.

Note: all values are unsigned!

Sequence:

1. Clear accumulator

Loop

x. Only if the last word is not composed of two bytes, the data byte will be the upper byte
(big endian).
2. Compute the 1’s complement of each 16-bit word, the result will be 16 bits.
3. Convert the last result from 16 bits to 32 bits, the result will be 32 bits: 0x0000+last
result.
4. Add the last result to the 32-bit accumulator.

Try the Loop

5. Convert accumulator into two 16-bit words.
6. Add those two 16-bit words, the result will be a 16-bit word.
7. If an overflow occurs with the last addition (Carry), add 1 to the last result.
8. The last result will be the final result.

Example (in hexadecimal):

 !0x0021 (0XFFDE) 0x0000FFDE (Read)

+!0x1234 (0xEDCB) 0x0001EDA9 (TransID)

+!0x0003 (0xFFFC) 0x0002EDA5 (3 reg to read)

+!0x0A10 (0XF5EF) 0x0003E394 (reg 0A,10,02)

+!0x02(00)(0XFDFF) 0x0004E193

Note that in this case an end 00 is implicitly used. (02 02 00).

0x0004 + 0xE193 = 0xE197, (carry=0)

0xE197 + carry = 0xE197

Checksum = 0xE197

63 / 209

Here is an example of a checksum calculation function in C++:

int RetCheckSum(Byte* ByteTab, int Size)

{

 // This function returns the calculated checksum

 unsigned int Sum=0;

 bool AddHighByte=true;

 unsigned int ChecksumCalculated;

 for(int i=0;i<Size;i++)

 {

 if(AddHighByte)

 {

 Sum+=((ByteTab[i])<<8)^0xFF00;

 AddHighByte=false;

 }

 else

 {

 Sum+=(ByteTab[i])^0x00FF;

 AddHighByte=true;

 }

 }

 if (AddHighByte==false)

 Sum+= 0xFF;

 ChecksumCalculated = ((Sum>>16)&0xFFFF)+(Sum&0xFFFF);

 ChecksumCalculated = ((ChecksumCalculated>>16)&0xFFFF)

 +(ChecksumCalculated&0xFFFF);

 return ChecksumCalculated;

}

This function needs a Byte array (ByteTab) containing the command
sequence and the array length (Size) as input. It returns the checksum as an
int.

64 / 209

7. I2C Inter face

Description

Registers are written to and read from the devices through the I2C bus; the
controllers are all I2C slave device. It is controlled by the I2C clock (SCL),
which is driven by the I2C master. Data is transferred into and out of the
cards through the I2C data (SDA) line. Either the slave or master device can
pull the SDA line down; the I2C protocol determines which device is
allowed to pull the SDA line down at any given time.

The maximum speed of the fast I2C interface is 400 kHz.

WARNING:
A pull up resistor Rp (off-card) has to be placed between SDA and VCC
(+5V) and between SCL and VCC. This is usually done at the beginning
(near the master) and at the end (near the last device of the daisy chain) of
the SDA and SCL lines.

(Rp = 4.7k)

Protocol

The I2C bus defines several different transmission codes, as follows:

 a start bit
 the slave device 8-bit address
 an (no) acknowledge bit
 an 8-bit message
 a stop bit

MASTER

SDA

SCL

Rp Rp Rp Rp

SLAVE

SLAVE

65 / 209

Sequence

A typical read or write sequence begins by the master sending a start bit.
After the start bit, the master sends the slave device’s 8-bit address. The last
bit of the address determines if the request will be a read or a write, where
a ‘0’ indicates a write and a ‘1’ indicates a read. The slave device
acknowledges its address by sending an acknowledge bit back to the master.
If the request was a write, the master then transfers the 8-bit register
address to which a write should take place. The slave sends an acknowledge
bit to indicate that the register address has been received. The master then
transfers the data 8 bits at a time, with the slave sending an acknowledge bit
after each 8 bits.

The motor controllers use date length of 1 byte up to 16 bytes for their
internal registers. The master stops writing by sending a restart or stop bit.
A typical read sequence is executed as follows:
First the master sends the write-mode slave address and 8-bit register
address just as in the write request. The master then sends a (re)start bit and
the read-mode slave address. It clocks out the register data 8 bits at a time.
The master sends an acknowledge bit after each 8-bit transfer. The data
transfer is stopped when the master sends a no-acknowledge bit.

Bus Idle State

The bus is idle when both the data and clock lines are HIGH. Control of the
bus is initiated with a Start bit, and the bus is released with a Stop bit. Only
the master can generate the start and stop bits.

Start Bit and Stop Bit

The start bit is defined as a HIGH to LOW transition of the data line while
the clock line is HIGH. The stop bit is defined as a LOW to HIGH transition
of the data line while the clock line is HIGH.

 Start & Stop sequence

66 / 209

I2C address selection

On each controller with I2C interface, its 7bits of I2C address must be
defined in hardware. Each line needs to be connected to +5v logic (1) or
logic ground (0). Do not leave any pin of address floating!

As example, if you want to set one FMod-I2CDCMOT DB 48/1.5 to address
40 (0x28), convert 40 (decimal) in binary code (b'00101000'), the 7 least
significant bits (0101000) are the values to be set to the corresponding
pins of J1 "I2C Address selection 6-0".

Slave AddressWrite/Read

The 8-bit address of an I2C device consists of 7 bits of address and 1 bit of
direction. A ‘0’ in the LSB of the address indicates write-mode, and a ‘1’
indicates read-mode.

If we want to do a write-sequence to the address 0x55, the AdressWrite is :

AdressWrite = 0xAA [i2c address (0x55)<<1 + direction bit (0)]

and if we want to do a read-sequence, the address used is:

AdressRead = 0xAB [i2c address (0x55)<<1 + direction bit (1)]

The I2C address of the device is the one that is hard-coded through the 7
address pins : [I2C Address selection bit 0,1,2,3,4,5,6,7 (in)]. With 7bits of
address, 128 values are possible, but the first (8) ones (0x00-0x07) and last
(8) ones (0x78-0x7F) are reserved for I2C protocol specific actions, these
values must not be used as an I2C address. If the device is set with one
wrong (reserved) address, it will take its default address 0x55 (85decimal,
binary'1010101').

Therefore you can define the address you want between 0x08 to 0x77
(decimal 8-119).

Data Bit Transfer

One data bit is transferred during each clock pulse. The I2C clock pulse is
provided by the master. The data must be stable during the HIGH period of
the I2C clock. It can change only when the I2C clock is LOW. Data is
transferred 8 bits at a time, followed by an acknowledge bit.

Acknowledge and No-Acknowledge Bit

The master generates the acknowledge clock pulse. The transmitter (which
is the master when writing, and the slave when reading) releases the data
line, and the receiver indicates an acknowledge bit by pulling the data line
low during the acknowledge clock pulse. The no-acknowledge bit is
generated when the data line is not pulled down by the receiver during the
acknowledge clock pulse. A no-acknowledge bit is used to terminate a read
sequence.

67 / 209

Write Sequence (1 byte and 4 bytes)

68 / 209

Read Sequence (1 byte and 4 bytes)

69 / 209

8. RS485 Inter face

Physical layer – RS485

Registers are written to and read from the devices through the RS485 lines.
Standard RS485 electrical specifications apply for our motor controllers. The
motor controllers are slave devices and the master always initiates the
communication. The register access protocol is described in the next
chapter, it is Question & Answer oriented.

The Baud rate of the communication is 115’200 Bd.

WARNING:
A termination resistor Rp (off-card) has to be placed between RS485+ and
RS485-. This is usually done at the beginning (near the master) and at the
end, near the last device of the daisy chain.

Rp = 100-200, depends on the Master RS485 driver.

MASTER

RS485+

RS485-
Rp

SLAVE

SLAVE

Rp

70 / 209

Registers Access Protocol

Question & Answer oriented

This protocol is based on the principle of a request eventually followed by
an answer. The transmitter of the request should wait for the answer before
sending another request.

Packet structure

Header

The requests and answers are based on the following structure:

DATA = (Fonction + parameters) x #fonctions + EndOfFrame +
Checksum.
The protocol is LSB-type (least significant byte first) : when the data of a
register are more than 1 byte long; it is the Least significant byte that is sent
first.

 The first Byte is the address of the destination of the packet (0x01-0xFF).
 The second Byte is the address of the emitter of the packet. When the

communication is made with a computer through a USB-RS485 bridge
(COM port), the emitter address is arbitrary and can be taken into
account by software (e.g. 0x10).

 The third Byte is the length of the rest of the frame called “Data”. Its
value is minimum 2 because “DATA” always finishes with 1 Byte “End of
Frame” + 1 Byte of “Checksum”. In that case, the packet would be
empty. The maximum length of “DATA” is 127 bytes.

DATA
Contains a succession of messages independent from each other.
Each message could be:
 A register read request
 A register read answer
 A register write
 Ask of an acknowledge
 Acknowledge
 An error message (e.g. packet size too large)
 End of frame

1 Byte

Destination
address

1 Byte

Source
address

1 Byte
[2 -127]

Following DATA
length

x Byte(s)

DATA

x ≤127

71 / 209

List of messages that « DATA » could contain, in binary code:

b000x xxxx
(0x00-0x1F)

Register read request (1 register)

(x xxxx is register length in #Bytes [1-31]) + 1 Byte register index
E.g. Register index for POSITION = 0x26

b001x xxxx
(0x20-0x3F)

Register read answer (1 register)

(x xxxx is register length in #Bytes [1-31]) + 1 Byte register index + n
[1-31] register value Bytes

b010x xxxx
(0x40-0x5F)

Write register

(x xxxx #Bytes to write [0-31]) + 1 Byte register index + n register
value Bytes
A Write request can be 0 Bytes, therefore it is a function call.
E.g. SAVEUSERPARAMETERS (0x03); Write code = 0x40 0x03

b011x xxxx Reserved

b100x xxxx Reserved
b101x xxxx Reserved

b1100 xxxx Reserved

B1101 xxxx Reserved

b1110 0000
(0xE0)

‘Type Ext’ register index error + 1 byte register index

This answer message indicates that a register could not be accessed.
Possible case:
Trying to write in a register that is “read-only”
The register does not exist
The size of the register is not good

b1110 0001
(0xE1)

‘Type Ext’ Frame ID + 1 byte Frame ID

This message forces the addressee to answer to this acknowledgement
request with the same frame ID.
The Frame ID (0-255) is an arbitrary value chosen by the emitter of this
message.

b1110 0010
(0xE2)

‘Type Ext’ Frame ID Answer + 1 byte Frame ID

This is the “acknowledgement request” answer containing the same
Frame ID than the acknowledgement request.

b1110 0011
(0xE3)

‘Type Ext’ End of Frame (standard) + 1 byte Checksum

This is ALWAYS the last message of a standard packet, indicating the
end of the packet (cancel 0xE5 answers).
It is followed by 1 Byte of checksum. The checksum calculation is
explained bellow.

b1110 0100
(0xE4)

‘Type Ext’ Frame error

This message indicates an overflow on the packet size (>127 Bytes) of
the answer.
E.g. if we asked too many registers to read, the data preceding this
message are valid, the following ones were not executed and
abandoned.
This message is always followed by ‘Type Ext’ End of Frame + 1 byte
Checksum.

b1110 0101
(0xE5)

‘Type Ext’ End of Frame Multi packet (keep answer) + 1
byte Checksum

It is ALWAYS the last message of a multiple packet, except if this is the

72 / 209

last one. The answer is kept by the addressee until 0xE6 or abandoned
with 0xE3. A pause of 1ms minimum is needed before sending another
packet.

b1110 0110
(0xE6)

‘Type Ext’ End of Frame End of Multi packet + 1 byte
Checksum

It is ALWAYS the last message of the last multiple packet.
The answers temporarily kept (0xE5) must be transmitted. If 2 packets
contain 0xE6, the second one has a completed answer.

b111x xxxx
(0xE7-0xFF)

Reserved

Remark:
If a packet does not need an answer (e.g. only containing writes without
frame ID), a minimum pause of 1ms is needed after sending the last octet,
before sending the next packet.

No answer

There is no answer to a packet in the following situations:

 Checksum is wrong
 The preceding Byte of the Checksum is not an “End of Frame”
 The size of the packet is larger than the value written in the 3rd byte + 3

(Destination address, source address and data length Bytes)

Packet example

Read request of 2 registers (4 bytes each): TYPE (0x00) and VERSION (0x01)
 Destination address = 0x20
 Source address = 0x10
 Data length = 0x06, 2x read request (2 bytes each) + 1 byte EoF + 1

byte Checksum
Hexadecimal : 20 10 06 04 00 04 01 E3 22

Answer :
 Type = 6.3 (FMod-IPECMOT 48/10 T1)
 Version = HW 1.8, FW 5.14
 Data length = 0x0E, 2x read answer (6 bytes each) + 1 byte EoF + 1

byte Checksum
 Hexadecimal : 10 20 0E 24 00 03 00 06 00 24 01 0E 05 08 01 E3 8F

Checksum calculation example

The checksum calculation is made adding all the Bytes in the packet,
including the ‘End of Frame’.
Request : 0x20+0x10+0x06+0x04+0x00+0x04+0x01+0xE3= 0x0122
Only the LSB is kept, therefore the Checksum = 0x22.

Answer :
0x10+0x20+0x0E+0x24+0x00+0x03+0x00+0x06+0x00+0x24+0x01+0x
0E+0x05+0x08+0x01+0xE3 = 0x018F
Only the LSB is kept, therefore the Checksum = 0x8F.

73 / 209

9. Configuration software : FSoft-MotorCtrl

A specific software is provided with the FiveCo’s motor controllers in order
to configure all the parameters as well as a graphical visualization of the
trajectory. The software is available at http://www.fiveco.ch/motor-
controlers-products.html -> left-click on the device you are using ->
Support, under the Softwares section you can download the latest version of
the FSoft-MotorCtrl.
This software is compatible with all the FiveCo’s motor controllers
connected through Ethernet either with a direct connection for the two
FMod-IPECMOT cards or through a FMod-TCP BOX 2 or FMod-TCP DB,
which is a bridge between TPC/IP and I2C, for the devices without an
embedded Ethernet connection.

Overview

First connect the device to an Ethernet network (direct from the computer
or to a local network). Then simply execute the
“FSoft_MOTORCTRL_vx_xx.exe” and click on Communication > IP Address
easy config. A window pops up with the devices connected to your network
with their respective MAC Address. If the IP Address is not in your subnet
mask range, click on the device and change it manually to suits your need.
The “Scan” button allows you to update this window.

In this example, the communication between a FMod-I2CDCMOT SLP 48/1
and the computer is made through a FMod-TCP DB. In the above figure, the
IP address is set to 192.168.16.133.

http://www.fiveco.ch/motor-controlers-products.html
http://www.fiveco.ch/motor-controlers-products.html

74 / 209

Once the IP address is configured correctly, a connection to the device can
be made.
Click on Communication > Scan network.

Left-click on the desired device.

If the communication is established through an FMod-TCP DB/BOX 2, the
following window will be displayed.

In this example, the device I2C address is the default one (0x55) and it is an
I2CDCMOT 48/1 SLP motor controller. Click on the “Open” button to
start the communication between the computer and the device.
This tab can be accessed afterwards under Communication->Parameters.
The name of the module can be changed as well as the communication
parameters. If the connection is made directly with the motor controller (e.g.

75 / 209

FMod-IPECMOT 48/10 T1 & T2) select the first check button “8010 –
Fmod-IPxxMOT” to access through TCP or “7010 – Fmod-IPxxMOT” to
access through UDP, if the connection is made through a FMod-TCP
DB/BOX 2 select “8010 – Fmod-TCP xx I2C”.

The following figure shows the main window of the FSoft-MotorCtrl.

1. Tab menu

a. File : Allow the user to save the motor controller
configuration as well as import parameters from previously
saved file.

b. Communication : The user can change the communication
parameters. Under Information, the rate at which the device
is questioned can be changed. Under Parameters, the name
of the device can be changed.

c. Loop Time : Allow to change the frequency at which the
regulation is completed. For more information concerning
Loop Time, see the description of the register LOOPTIME
(0x2D).

d. Options : Read and write the OPTIONS register. For more
information see the description of the register OPTIONS
(0x2C).

e. Warning : Visualize and clear the WARNING register. For
more information see the description of the register
WARNING (0x08).

f. Limits : Allow the user to configure the behaviour of the
device when Limits inputs are reached. Limit2 cannot be used
for homing purpose. Refer to chapter 12, 13 and registers
related to Limits configuration (LIMIT1SETUP (0x50)
LIMIT1XINPUT (0x53), LIMIT2SETUP (0x58)

2
5

1

3

4

8

7

6

76 / 209

LIMIT2XINPUT (0x5B); HOMINGOPTIONS (0x48) for more
information.

g. Homing : Homing configuration tab. Do not forget to save
the user parameters in the main window before launching
the homing since ACCELERATION, TOPSPEED and
CURRENTMAX saved value will be restored when homing is
completed. For more information on Homing, see chapter 13
and the registers related to homing (HOMING (0x49),
STOPHOMING (0x4A), HOMINGOPTIONS (0x48),
HOMINGPOSITION (0x4B), HOMINGINPUT (0x4B) and
HOMINGSTARTINPUT (0x47)).

h. Auto-tuning : More information in chapter 11 and AUTO-
TUNING (0x39) register.

i. Loops input : More information in chapter 14 and the
register related to Loops configuration (ENHANCEDINPUTS
(0x4D), LOOPSCONFIG (0x4E) and ENHANCEDPARAMS
(0x4F)).

j. I/O state : Shows the state of the 2 I/Os as well as the limits.
More information in the IOSTATE register (0x56).

k. About : Version of the software.

2. Parameters

This panel allows the user to manually set the parameters of the
motor controller.
- KP (0x33)
- KI (0x34)
- KD (0x35)
- ANTIRESETWINDUP (0x36)
- ACCELERATION (0x40)
- DECELERATION (0x41)
- TOPSPEED (0x42)
- DEADZONE (0x43)
- ENCODERSRATIO (0x44)
More information on each individual parameter in the
corresponding registers description at the end of this manual and
at chapter 10 “Motion Control modes”.

The trackbars can be used to change the value of each
parameter, as well as the field next to them. When a value is
entered in one field, press enter to send that only value to the
controller. Instead when the “Write” and “Read” button are
used, it writes/read all the values to/from the controller.

3. Regulation mode

Manually set the regulation mode in which the controller is
operating. The regulation mode is continuously read from the
controller, hence it can change by itself (e.g. when an over/under
voltage is detected, standby, etc.).

77 / 209

Refer to chapter 10 “Motion Control modes” to have more
information on the regulation modes.

4. Trajectory values

Numerically displays the actual position and the actual speed. For
DC brushed and brushless motor controllers, also shows the
desired state, which is the speed that the PID regulator is trying
to reach.
For FMod-I2CSTEPMOT, displays the position in full steps with 1
µpulse = 1/256 of a full step.
“Reset” button writes 0 to the POSITION (0x26) register.

5. Input

Allow the user to set the input which could be either the
position goal, the speed goal or the PWM consign sent to the
controller depending on the actual regulation mode. The consign
can be change by entering a value in the field and then press
“Go” to send it or “Enter” key.
Another choice is to use the two trackbars; the bottom one
changes the range of the trackbar above it. You do not need to
press the “Go” button to send the command if the box on the
right is checked, it automatically sends the command when
changed. Uncheck this box and you will be able to move the
consign trackbar without sending its value.

6. Graphical visualization

3 different graphics are available. One displays the position
trajectory of the motor, the second one the speed trajectory and
the third one the PWM output of the controller. For the
“Command output” tab, the range is +-100% of the maximum
PWM that the controller can deliver.
Two checkboxes are available on the top right side of the
graphical visualization.
“Refresh”: when unchecked, it stops continuously reading the
registers from the controller, hence no position update, no
regulation mode update, etc.
“Graphic”: when unchecked it stops the graphical visualization,
but still updates the position, regulation mode, etc.

7. Save parameters

It allows the user to save the current parameters of the
controller in the EEPROM memory of the device. Thus at
power-up, it will restore back the parameters previously saved.
For FMod-I2CDCMOT SLP 48/1 and FMod-I2CSTEPMOT SLP
35/1 & 35/0.1, the “Save/Restore user param.” is exactly the
same as “Save/Restore factory param.”, it points to the same
EEPROM data.

78 / 209

On the other controllers, user and factory parameters are
different. The registers saved/restored when using those functions
are described under the SAVEUSERPARAMETERS (0x03)
description at the end of this manual.

8. Status bar

The communication status, IP address, I2C address, hardware and
firmware versions, voltage, temperature and device name are
shown in the status bar.

79 / 209

10. Motion Control modes

General parameters

The motion controller drives DC motor by controlling the motor input
voltage.
The system works as follow:

 Desired setpoint of the motion is set in the INPUT register.

 Depending on the regulation mode, the motion controller generates
the COMMAND register that is a percent of PWM (equivalent to a
percent of voltage in the system)

 The COMMAND is sended to the voltage driver that powers the
motor

The main INPUT (0x21) (PWM/Speed/Position) is software-limited with
configurable INPUTMIN (0x24) and INPUTMAX (0x25) values.

The motor voltage and motor current are software-limited with configurable
OUTPUT VOLTAGE MAX and CURRENT MAX values

Motor regulation parameters

Speed and position regulation of DC motor is based on a PID algorithm and
a feed forward prediction technique.

Feed forward

VFFOFFSET (0x61)
A constant value is added to the COMMAND in order to compensate de
friction losses of the motor. By default, VFFOFFSET is set to -1000.

KVFF (0x62)
For ideal motor (without frictions, internal resistance and inertia), the speed
of the motor is proportional to its supply voltage. Therefore, the motor can
be controlled by adding a velocity feedforward term to the command. The
velocity feedforward term is the result of the multiplication of the gain KVFF
with the desired speed. The ideal KVFF is the value for which SPEED =
DESIRED when the motor turns at a constant speed with no load and when
VFFOFFSET compensates motor friction losses.

80 / 209

KAFF (0X63)
The torque produced by the acceleration of the motor (inertia) increase the
current that flowns trought the motor. A part of this additonnal power is
dissiped in the internal resistance of the motor and leads to a delay between
the desired speed and the actual speed during acceleration phases.

This delay can be reduced thanks to feed forward technic by adding an
acceleration feedforward term to the command. Since the additional voltage
needed is proportional to the desired acceleration, the acceleration
feedforward term is the result of the multiplication of the gain KAFF with the
desired acceleration.

Speed profile without acceleration gain

Time [s]

sp
e
e
d

[p
u
ls
e
s

/s
e
c]

Acceleration

Desired

Previous speed

Goal speed

Actual speed

Command

Speed profile in “Speed Control mode” with acceleration gain

Time [s]

sp
e
e
d

[p
u
ls
e
s

/s
e
c]

Acceleration Desired

Previous speed

Goal speed

Actual speed

Command

81 / 209

KDFF (0x64)
In position control mode, acceleration and deceleration parameters of the
trajectory generator are differenciated. Therefore, a decceleration feed
forward term is added to the command while the velocity is decreasing in
position control mode. The deceleration feed forward term is the result of
the multiplication of the gain KDFF with the desired decceleration. Generaly,
KDFF = [0.5 - 1] ∙ KAFF.

KVFF, KAFF, KDFF and VFFOFFSET depend mainly on the type of motor,
voltage and encoder resolution.

(*) KVFF, KAFF, KDFF and VFFOFFSET are obviously not implemented on
FMod-I2CSTEPMOT 35/1 & 35/0.1 since stepper motors don’t need
feedforward regulation.

PID controller

KP, KI, KD depend mainly on the type of motor, voltage and encoder
resolution. The more the encoder has pulses per revolution, the smaller the
KP, KI, KD values are.

(*) KP, KI, and KD are obviously not implemented on FMod-I2CSTEPMOT
35/1 & 35/0.1 since no feedback on the motor position is needed.

List of regulation modes

 Brake
 Driver Open
 Open Loop
 Wait
 Speed Control (Torque mode)
 Position Control
 Standby

Brake mode

REGULATIONMODE = 0x00.

(*) For brushed and brushless motor controllers
Brakes the motor with CURRENTMAX register value. After 1-2 seconds, the
motor is fully short-circuited.

(*) For stepper motor controllers
Preform a high frequency switching on the phases of the motor, making it
equivalent to a magnetic brake.

82 / 209

Driver Open mode

REGULATIONMODE = 0x01.

Switches OFF the H-bridge power transistors.
(Internal protection diodes still work.)

Open Loop mode

REGULATIONMODE = 0x02.

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/x, equivalent to Driver Open
mode.

INPUT register is copied to COMMAND register which is then converted
without regulation to PWM output.

Maximum INPUT is 0x0000FFFF (65535). Represents 100% of forward
PWM.

INPUT (0) represents 0% of PWM.

Minimum INPUT is 0xFFFF0001 (-65535). Represents 100% of backward
PWM.

Use this mode if a custom regulation is made on another CPU.

With PWM 9 bits, the 7 least significant bits are unused.
When PWM 10 bits is selected, the 6 least significant bits are unused.

83 / 209

Wait mode

REGULATIONMODE = 0x03.

(*) For brushed and brushless motor controllers
This mode leaves the PWM and current output unchanged, and halts PID
regulation).

(*) For stepper motor controllers
This mode leaves the phases actuation speed and the current output
unchanged.

All registers can be updated with no influence on the outputs.

This mode can be used when several registers need to be changed at the
same time.

Speed Control mode

REGULATIONMODE = 0x04.

INPUT is the speed to reach. If immediate INPUT is DESIRED, set
ACCELERATION to max.
If smooth control is needed, DESIRED value can accelerate up/down to
INPUT. ACCELERATION defines the slope between the INPUT and DESIRED
registers. FEEDBACK is represented by the effective SPEED of the motor.

84 / 209

(*) For brushed and brushless motor controllers

85 / 209

(*) For stepper motor controllers

86 / 209

“Speed Control mode“ graph example:

Note: TOPSPEED is not used in “Speed Control mode”, only in

“Position Control mode”. INPUTMIN (0x24) and INPUTMAX
(0x25) registers provide further possibilities for replacing
TOPSPEED. After a new INPUT (goal) has been set, it is possible
to change INPUT, or ACCELERATION without having to wait for
the goal to be reached.

How to choose the correct PID parameters in Speed Control mode?

(*) For brushed and brushless motor controllers

The device is able to find approximate good values for the PID and
feedforward regulator by itself, see “Auto-tuning” chapter and register
AUTO-TUNING (0x39) for more information.

After the AUTO-TUNING is done, test your application, and modify
ACCELERATION to suit you.

If you think your application has a lot of friction or inertia, you can adapt
feedforward gains. In that case, increment VFFOFFSET to counteract friction
and KAFF and KDFF to counteract inertia. (It is better to desactivate PID
regulation during the tuning if possible in order to see the effect of
feedforward terms).

If you think that the PID regulator needs to be smoother, decrement
LOOPTIME by 1 step (example: from 2ms to 5ms).

Speed profile in “Speed Control mode”

Time [s]

sp
e
e
d

[p
u
ls
e
s

/s
e
c]

Goal reached

Acceleration

Previous speed

87 / 209

Otherwise, if you think that the PID regulator needs to be more dynamic,
increment KP by +30% (example: from 1.4 to 1.82). If it is not enough,
increment LOOPTIME by 1 step (example: from 2ms to 1ms).

When all is done, don’t forget to run the function SAVEUSERPARAMETERS.

88 / 209

Position Control mode

REGULATIONMODE = 0x05.

INPUT is the position to reach. The trajectory kernel calculates in real-time
the DESIRED speed for the PID regulator and the FEEDBACK is represented
by the effective SPEED and POSITION of the motor.

89 / 209

(*) For brushed or brushless motor controllers

90 / 209

(*) For stepper motor controllers

For the position trajectory, a full trapezoid speed profile consists of 3
different movements:
- ACCELERATION from actual speed
- TOPSPEED
- DECELERATION when approaching the goal.

DEADZONE is complementary to the deceleration and defines a zone
around the goal point (INPUT ± DEADZONE) where the DESIRED speed is
forced to zero. It is useful when DECELERATION is greater than the effective
motor deceleration. It will skip oscillations in this case.
DEADZONE is not taken into account for stepper motor controllers.

91 / 209

“Position Control mode” graph example:

How to choose the correct PID parameters in Position Control mode

(*) For brushed or brushless motor controllers

The device is capable of detecting approximate correct values for the PID
and feedforward regulators – see the chapter on “Auto-tuning”.

After the AUTO-TUNING is done, test your application, and modify
ACCELERATION, DECELERATION to your requirements.

Speed profile in the “Position Control mode”

Time [s]

sp
e
e
d

[p
u
ls
e
s

/s
e
c]

Top speed

Acceleration

Deceleration

Goal reached

Position profile in the “Position Control mode”

Time[s]

p
o
si
ti
o
n

[p
u
ls
e
s

]

Goal position

2
x
 D

e
ad

 z
o
n
e

92 / 209

If you don’t want your motor to run at full speed, reduce it by reducing
TOPSPEED.

If you think your application has a lot of friction or inertia, you can adapt
feedforward gains. In that case, change VFFOFFSET to counteract friction and
KAFF and KDFF to counteract inertia. (It is better to desactivate PID
regulation during the tuning in order to see the effect of feedforward terms).

If you think that the PID regulator needs to be smoother, decrement
LOOPTIME by 1 step (example: from 2ms to 5ms).

Otherwise, if you think that the PID regulator needs to be more dynamic,
increment KP by +30% (example: from 1.4 to 1.82). If it is not enough,
increment LOOPTIME by 1 step (example: from 2ms to 1ms).

If the goal position is not accurate enough, try to reduce DEADZONE, but if
oscillation occurs, increase DEADZONE until the oscillation disappears.

When all is done, don’t forget to run the function SAVEUSERPARAMETERS.

93 / 209

Standby mode

(*) For FMod-I2CDCMOT SLP 48/1 and FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

REGULATIONMODE = 0x06.

This is the ultra-low power mode, 50nA of current consumption on each
supply power at ambient temperature to a maximum of 1µA at higher
temperature. This consumption is obviously higher if a constant I2C
communication is kept between the master and the device. Therefore, when
the user wants to reduce power consumption, the controller is put in
Standby mode and stops communicating with it until another mode is
desired (Position control, speed control, etc.).

The motor power supply is shut-down, as well as the encoder power.
Therefore if the motor is moved while in Standby mode, the reference
(home) would be lost since the encoder is not powered.

When going out of Standby mode to another motion control mode (e.g.
Position control mode), the encoder is powered-up again and, depending on
the encoder type, it risks to generate unwanted pulses for a certain period
of time. This is the case particularly for magnetic encoders, which perform an
algorithm to find its actual position when powered-up. SKIPPULSESTIMER
(0x3A) register allows the user to set a time during which the incoming
pulses from the encoder are not counted when powering up the encoder.

94 / 209

11. Auto-tuning

This chapter is only relevant for the brushed or brushless motor controllers,
since no PID and feed forward regulation is done on stepper motor.

This feature helps application engineer to define the PID (proportional-
integral-derivation) gains as well as feedforward gains for speed control or
positioning. The motor must be mechanically disconnected from its
application, because auto-tuning requires that the moto run at its maximum
speed.

The developer first needs to select the maximum current possible
(proportional to torque), and if a maximal output voltage is required, then it
needs to be set before starting the auto-tuning, when it will be writing to the
AUTO-TUNING register.

What does auto-tuning consist of?

 During the test, the top speed will be measured, and 85% of the
measured value is put into the TOPSPEED register (at that speed, the
motor still has torque).

 Computed values of KP, KI, KD, ACCELERATION, DECELERATION

and DEADZONE are updated.

 Computed values of KVFF, KAFF, KDFF and VFFOFFSET are updated.

 Depending on the speed of the motor and the resolution of the
encoder, the refresh LOOPTIME value is updated.

 If encoders are swapped, the device automatically inverts the sign of

their values (OPTIONS register)

 If encoders with poor resolution are used, an interpolation of 10x is

set (OPTIONS register).

 During auto-tuning, the encoder source is updated for brushless

motors only: if no A/B quadrature encoder is connected, then hall
sensor states will be used as encoders.

 PWM frequency (OPTIONS register) is set to 69kHz (T2 125kHz) for

small motors to reduce thermal dissipation of the motor.
o CURRENTMAX<5A for FMod-IPECMOT T1 & T2 and FMod-

I2C485ECMOT DB
o CURRENTMAX<1A for FMod-I2CDCMOT DB & SLP

PWM frequency is set to 35kHz (T2 63kHz) for big motors in order
to reduce thermal dissipation.

95 / 209

o CURRENTMAX>5A for FMod-IPECMOT T1 & T2 and

FMod-I2C485ECMOT DB
o CURRENTMAX>1A for FMod-I2CDCMOT DB

Why do I need to mechanically disconnect the motor for auto-tuning?

This device doesn’t function by inertia computation, hence why the auto-
tuning can be (and should be) done with no extra-inertia. The second
reason is for the security of the user and the application.

96 / 209

12. Limit switches

The term “Limit” used in this manual can also be understood as: “end
stroke”, “reference”, “stopper” or “action”. It depends on the external use
of each limit signal.
Two independent limit/switch sensors can be connected to the motor
controller. Only Limit1 can be configured to be the limit for “Homing”.

In FMod-IPECMOT 48/10 T1 & T2 and FMod-I2C485ECMOT DB 48/10,
the power supply of 5V is provided from the motor controller board.
For the other smaller cards, the power supply of 5V is applied externally.

To configure a limit, it is necessary to update a set of registers:

 OPTIONS.5 The register selects pull-up or pull-down resistors

of 1.5KOhm to both Limits.
 LIMIT1SETUP The register configures the activity of limit

number 1.
 LIMIT2SETUP The register configures the activity of limit

number 2.

Refer to the chapter “Register management” for further information.

Here are some examples of limits:

 Reset: changes REGULATIONMODE to desired mode,
sets POSITION and INPUT.

 Thrust: sets a new INPUT to return to normal range.
 Reference: only sets a new POSITION once reached.
 Stopper: changes REGULATIONMODE to Brake mode, to

stop the motor.
 Other: any combination of REGULATIONMODE,

POSITION, INPUT.

Motor Controller Board

 L1 +
 L1 input
 L1 -

Sensor 1

Logic 5V
Output signal

 Logic Gnd

Sensor 2

Logic 5V
Output signal

Logic Gnd

Limit connections

 L2 +
 L2 input
 L2 -

97 / 209

13. Homing (position reference)

The Motion Control card offers multiple methods for finding the home-
position (only for positioning the system). This method called “Homing” is
intended to be the calibration process for the reference position of the card.

* Alternative for Limit 1 sensor

A mechanical or electrical signal generated by Limit switch L1 can be
combined with the index signal to define the home position. (The index
signal can be found on the 3rd channel on the encoders, as well as the A/B
signals).

The index signal has obviously no meaning with stepper motor.

Keep in mind that the POSITION value can be automatically saved in
EEPROM when the power shuts down, and restored at power-up. See
OPTIONS (0x2C) register for these details.

- +

M

Index signal

L1 - L1 +

Limit switch 1 (-)
signal

*Limit switch 1 (+)
signal

98 / 209

List of Homing methods

0. Actual position is correct, don’t alter.
1. Actual position is home, set new INPUT.
2. Move - to the first index.
3. Move + to the first index.
4. Move - to the mechanical limit.
5. Move + to the mechanical limit.
6. Move - to the mechanical limit with index.
7. Move + to the mechanical limit with index.
8. Move - to Limit switch 1.
9. Move + to Limit switch 1.
10. Move - to Limit switch 1 with index.
11. Move + to Limit switch 1 with index.
12. Move of start input.
13. Move of start input to the limit 1 switch.

All Homing methods set REGULATIONMODE (0x20) to Position Control
mode. When the Homing conditions are verified, the HOMINGPOSITION
register is copied to POSITION, and the new INPUT is set with
HOMINGINPUT.

For the Homing sequence, the user can program values for ACCELERATION,
TOPSPEED and CURRENTMAX different to the standard “Position Control
mode” ones. The user can also define in the HOMINGOPTIONS register the
ratios (% of value of these registers) used during Homing.
When Homing is completed, the standard values are automatically restored
from EEPROM.

99 / 209

The following table indicates which homing method can be used with the
different controllers. The 4 bits corresponds to HOMINGOPTIONS.[0-3]
(0x48).

4 bits Homing method IPECMOT T1/T2
I2C485ECMOT

I2CDCMOT
DB/SLP

I2CSTEPMOT
SLP

0x0 Already home – don’t change X X X

0x1 Already home and set INPUT X X X

0x2 Negative move to the first index X

0x3 Positive move to the first index X

0x4 Max current detection with negative
move

X X

0x5 Max current detection with positive
move

X X

0x6 Max current detection with negative
move and index

X X

0x7 Max current detection with positive
move and index

X

0x8 Negative move to the limit 1 switch X X

0x9 Positive move to the limit 1 switch X X

0xA Negative move to the limit 1 switch and
index

X

0xB Positive move to the limit 1 switch and
index

X

0xC Move of start input X

0xD Move of start input to the limit 1 switch X

0xE Unused

0xF Unused

Example:
If a standard TOPSPEED value in Position Control mode is 100’000
pulses/sec and needs to be reduced by 50% (50’000 pulses/sec) during a
Homing method, then configure to 50% the bits relevant to TOPSPEED in
the HOMINGOPTIONS (0x48) register.

For brushed and brushless motor controllers, when a mechanical limit
system is used, another parameter, “time”, must also be configured. It
represents how long the PWM output to the motor needs to remain
saturated (=current max reached & torque max reached) before the home
position is accepted.

Note:
During Homing no external INPUT, INPUTOFFSET, INPUTOFFSETMEASURED
or REGULATIONMODE are accepted. Attempts to write these values will
therefore be skipped. The only way to stop or modify Homing is to operate
the STOPHOMING (0x4A) function.

100 / 209

Homing method 0: Actual position is correct, don’t alter

 The actual POSITION is not overwritten, but copied to the INPUT
register.

Homing method 1: Actual position is correct, set new INPUT

 The actual POSITION is not overwritten.
 The HOMINGINPUT register is copied to the INPUT register.

Homing method 2: Move backward (-) to the first index

 HOMINGPOSITION is copied to POSITION when the next index is found.
 The HOMINGINPUT register is copied to the INPUT register.

Homing method 3: Move forward (+) to the first index

 HOMINGPOSITION is copied to POSITION when the next index is found.
 The HOMINGINPUT register is copied to the INPUT register.

Note:
In Homing methods 2 and 3, even if the “home position” is defined (by the
index), the motor will continue to move until the position/speed value has
reached its goal (INPUT).

-

M

Index signal

H

+
M

Index signal

H

101 / 209

Homing method 4: Move backward (-) to the mechanical limit

When the module detects a saturated PWM output (torque value control)
for more than the time specified in the HOMINGOPTIONS register, home is
validated:

 The HOMINGPOSITION is copied to the POSITION register.
 The HOMINGINPUT is copied to the INPUT register.

The (user-definable) value of CURRENTMAX and its corresponding ratio
(used during the Homing sequence) are very important for this method.
Please note that a high current (torque) can destroy mechanical parts of the
system (e.g. gears).

Homing method 5: Move forward (+) to the mechanical limit

When the module detects a saturated PWM output (torque value control)
for more than the specified time with HOMINGOPTIONS, home is validated:

 The HOMINGPOSITION is copied to the POSITION register.
 The HOMINGINPUT is copied to the INPUT register.

The (user-definable) value of CURRENTMAX and its corresponding ratio
(used during the Homing sequence) are very important for this method.
Please note that a high current (torque) can destroy mechanical parts of the
system (e.g. gears).

M

H
-

M

H
+

102 / 209

Homing method 6: Move backward (-) to a mechanical limit and index

When the module detects a saturated PWM output for more than the
specified time with HOMINGOPTIONS, it changes direction (forward) until it
finds the index, then home is validated:

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

CURRENTMAX and its corresponding Homing ratio are very important for
this method. Please note that the high current (torque) can destroy
mechanical parts of the system (e.g. gears).

Homing method 7: Move forward (+) to a mechanical limit and index

When the module detects a saturated PWM output for more than the
specified time with HOMINGOPTIONS, it changes direction (backward) until
it finds the index, then home is validated:

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

CURRENTMAX and its corresponding Homing ratio are very important for
this method. Please note that the high current (torque) can destroy
mechanical parts of the system (e.g. gears).

M

-

Index signal

H

M

Index signal

H

+

103 / 209

Homing method 8: Move backward (-) to limit switch 1

When the module detects the active state of limit switch 1, it changes
direction (forward) until the limit activity ends, home is then validated:

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

During Homing with Limit Switch activity, the standard actions defined by
LIMIT1SETUP are suspended.

Homing method 9: Move forward (+) to Limit Switch 1

When the module detects the active state of Limit Switch 1, it changes
direction (backward) until the limit activity ends, home is then validated:

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

During Homing with Limit Switch activity, the standard actions defined by
LIMIT1SETUP are suspended.

M

L1 -

Limit Switch 1 (-)
signal

-
H

M

L1 +

Limit Switch 1 (+)
signal

H

+

104 / 209

Homing method 10: Move backward (-) to Limit Switch I and index

When the module detects the active state of Limit Switch 1, it changes
direction (forward) until the Limit activity ends. With the first index, home is
validated:

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

During Homing with Limit Switch activity, the standard actions defined by
LIMIT1SETUP are suspended.

Homing method 11: Move forward (+) to Limit Switch 1 and index

When the module detects the active state of Limit Switch 1, it changes
direction (backward) until the Limit activity ends. With the first index, home
is validated:

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

During Homing with Limit Switch activity, the standard actions defined by
LIMIT1SETUP are suspended.

M

Index signal

L1 +

Limit Switch 1 (+)
signal

H

+

M

Index signal

L1 -

Limit Switch 1 (-)
signal

H

-

105 / 209

Homing method 12: Move of Start Input

(*) For stepper motor controllers only

The module moves of HOMINGSTARTINPUT (0x47) to the mechanical limit.
When the mechanical limit is reached, the motor will continue until
HOMINGSTARTINPUT is reached. The sign of HOMINGSTARTINPUT indicates
whether to move in the positive direction or the negative one. When
HOMINGSTARTINPUT is reached, the homing is validated.

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

As shown in the above figure, if the position for the motor is unknown, the
HOMINGSTARTINPUT should be at least equal to the mechanical range of
the motor to be sure to have reached the mechanical limit.

M

H
+

H -

Start Input+ Start Input-

106 / 209

Homing method 13: Move of Start Input to the Limit Switch 1

(*) For stepper motor controllers only

The module moves of HOMINGSTARTINPUT (0x47) to the Limit Switch 1.
When the Limit Switch 1 is reached, it changes direction (opposite) until the
Limit activity ends, home is validated.
The sign of HOMINGSTARTINPUT indicates whether to move in the positive
direction or the negative one. If HOMINGSTARTINPUT is reached before
reaching the Limit Switch 1, home is not validated.

 HOMINGPOSITION is copied to the POSITION register.
 HOMINGINPUT is copied to the INPUT register.

* Alternative for Limit 1 sensor

As shown in the above figure, if the position for the motor is unknown, the
HOMINGSTARTINPUT should be at least equal to the mechanical range of
the motor to be sure to have reached the limit.

M

L1

Limit Switch 1
signal

H

*Limit Switch 1
signal

L1

H

Start Input+ Start Input-

+ -

107 / 209

14. Loops management

This feature helps the application engineer to have a precise positioning of
his system even when using a gearhead on top of the motor. Most often, the
couple motor-gearhead does not have an integer number of pulses per turn.
Therefore the error on one turn will add up, resulting in imprecision on the
final position.
The loops configuration feature takes into account non integer gearhead
ratio as long as the user knows the exact fractional reduction of the
gearhead. This information can be obtained from the gearhead
manufacturer.
The Loops management automatically updates the INPUT (0x21) and
POSITION (0x26) registers as often as needed.

Overview

Here is an example where Loops mode can be used. The application is a
rotary table connected directly to the motor device through a gearhead.
The gearhead reduction is given approximately to 14:1, the exact ratio is
676/49 (manufacturer data). The motor has 4’096 pulses per revolution,
which gives 56’508 + 4/49 pulses per revolution of the table.

Without the Loops management, after 12.25 turns the table will be shifted
one pulse away from its original position. If the system goes on forever,
major misalignment will appear.
In Loops mode the correction is made automatically when the incrementing
remainder is larger than 1. In the example above, one pulse is added every
12 or 13 turns. A number of features are available in this mode and they will
be explained in this chapter.

0%

25%

50%

75% M

56’508 + 4/49 pulses/turn

Motor + Gearhead

Rotary table

108 / 209

Loops configuration

Three parameters have to be defined, the number of pulses per turn
(LOOPSCONFIG.[0-31]), the numerator (LOOPSCONFIG.[32-63]) and the
denominator (LOOPSCONFIG.[64-95]) of the fractional pulse left. In the past
example of the rotary table, the pulses per turn are 56’508, the numerator is
4 and the denominator is 49. The numerator must always be smaller than
the denominator.

Loops mode

The Loops mode is chosen with setting the appropriate value in the
LoopsCounter (ENHANCEDINPUTS.[32-39]). The LoopsInput
(ENHANCEDINPUTS.[0-31]) can be defined in pulses or in percent of one
full turn. If ENHANCEDINPUTS.44 = 0, LoopsInput is in pulses and is written
on 4 bytes.
If ENHANCEDINPUTS.44 = 1, LoopsInput is in percent of one full turn and is
written on 3 bytes, ENHANCEDINPUTS.[24-31]) are not used. For example
0x00 FF FF FF = 99.9999%, 0x00 80 00 00 = 50%, 0x00 40 00 00 = 25%,
etc.

Loops

-99 (0x9D) ≤ LoopsCounter ≤ +99 (0x63)

Standard mode, takes the LoopsInput (ENHANCEDINPUTS.[0-31]) and
LoopsCounter (ENHANCEDINPUTS.[32-39]) as inputs. In this mode, the
rotary table will make a number of turn equal to what is set in
LoopsCounter, and it will stop at the LoopsInput position.

Shortest Way

LoopsCounter = 101 (0x65)

The table will move towards LoopsInput position with taking the shortest
path between its actual position and the goal. If the rotary table is at the
position 0, and we ask it to move to 75% of one turn, it will turn anti-
clockwise towards 75%. Since the LoopsCounter (ENHANCEDINPUTS.[32-
39]) is used to configure this mode and the following ones, it cannot be used
for another purpose.

1st positive position

LoopsCounter = 102 (0x66)

The table will move towards LoopsInput position going in the positive
direction.

109 / 209

1st negative position

LoopsCounter = 103 (0x67)

The table will move towards LoopsInput position going in the negative
direction.

Same direction, if speed = 0 then shortest way

LoopsCounter = 104 (0x68)

The table will move towards LoopsInput position going in the same direction
as it is currently running. If the motor is still, then the shortest way will be
taken.

Same direction, if speed = 0 then 1st positive position

LoopsCounter = 105 (0x69)

The table will move towards LoopsInput position going in the same direction
as it is currently running. If the motor is still, then the LoopsInput will be
reached by the positive direction.

Same direction, if speed = 0 then 1st negative position

LoopsCounter = 106 (0x6A)

The table will move towards LoopsInput position going in the same direction
as it is currently running. If the motor is still, then the LoopsInput will be
reached by the negative direction.

Brake and at speed = 0 set actual position in input

LoopsCounter = 107 (0x6B)

The motor will brake using the ACCELERATION parameter. Then when it is
still, the actual position will be copied in LoopsInput hence the table will not
move anymore.

Take offset input

LoopsCounter = 108 (0x6C)

Adds the LoopsInput to the actual INPUT, therefore the motor will move of
an offset equal to LoopsInput.

Take offset measured input

LoopsCounter = 109 (0x6D)

Adds the POSITION to the LoopsInput and performs the Loops management
(INPUT = POSITION + LoopsInput).
This feature is useful when the user wants to stop the table from turning
without accessing the POSITION register.

110 / 209

For example, the table is turning at a certain speed and at one point, the
table needs to be stopped at 25% of one full turn away from the actual
position.

Infinite positive loops with speed defined by input

LoopsCounter = 110 (0x6E)

The table will turn indefinitely in the positive direction at the speed defined
in LoopsInput. Although the synchronisation is maintained within the actual
turn.
This feature is usefull when the user wants to have a constant rotary
movement that can be interrupted by an external event at any time. When
this event occurs, the application can set the LoopsInput register with one of
the mode explained above to stop the rotary movement at the desired
position.

Infinite negative loops with speed defined by input

LoopsCounter = 111 (0x6F)

The table will turn indefinitely in the negative direction at the speed defined
in LoopsInput.

Loops Options and Status

To validate and send a new Loops command, ENHANCEDINPUTS.47 has to
be set to ‘1’.

A Loops command is already running if ENHANCEDINPUTS.46 is equal to ‘1’.
If a wrong LoopsCounter (ENHANCEDINPUTS.[32-39]) is sent,
ENHANCEDINPUTS.45 is equal to ‘1’ (LoopsCounter range is [-100;111]).

LoopsInput can be defined in pulses or in percent of one full turn. By setting
ENHANCEDINPUTS.44, LoopsInput will be in percent, otherwise in pulses.

If ENHANCEDINPUTS.43 is equal to ‘1’, the peak current management is
enabled. Refer to the following section for more information.

Peak current management

Peak current management is useful when the user wants a burst of current
at the beginning of the loops movement, hence during the acceleration
phase. This feature can be enabled by setting the bit
ENHANCEDINPUTS.[43].

111 / 209

The configuration for the peak current is in register ENHANCEDPARAMS.
ENHANCEDPARAMS.[0-15] is the peak current value in 1.1 (unsigned) fixed
point notation (ex: 5.75 A = 0x05C0). ENHANCEDPARAMS.[16-31] is the
peak current duration in milliseconds (ex: 2 seconds = 0x07D0).

Every time a new Loops command is sent and the peak current
management is enabled, the maximum current in the motor is set to the
peak current specified in the configuration and for the duration configured.
After this lapse of time, the maximum current is set back the current
specified in the register CURRENTMAX (0x2A).

Using Loops mode example

Let’s take the same rotary table as the overview of this chapter. The step is
to configure the number of pulses per turn (LOOPSCONFIG.[0-31]), the
numerator (LOOPSCONFIG.[32-63]) and the denominator
(LOOPSCONFIG.[64-95]) of the fractional pulse left. In the past example of
the rotary table, the pulses per turn are 56’508, the numerator is 4 and the
denominator is 49.
 LOOPSCONFIG (0x4E) = 0x00 00 00 31 00 00 00 04 00 00 DC BC
 12 Bytes Denominator Numerator Pulses/turn

We want to have more current when during the acceleration at the
beginning of the movement. Therefore we set the Peak current to be 3.25 A
for 500ms (CURRENTMAX (0x2A) = 2.5 A). ENHANCEDPARAMS.[0-15] is
the peak current value in 1.1 fixed point notation and
ENHANCEDPARAMS.[16-31] is the peak current duration in milliseconds
 ENHANCEDPARAMS (0x4F) = 0x00 00 00 00 01 F4 03 40

 8 Bytes Reserved Duration PCurrent

Finally the Loops mode is configures for 54 turn in the positive direction and
to stop at 25% of full turn. Therefore LoopsCounter
(ENHANCEDINPUTS.[32-39]) = 54 = 0x36. The LoopsInput
(ENHANCEDINPUTS.[0-31]) in percent of one full turn = 25% (3 bytes) =
0x00 40 00 00. ENHANCEDINPUTS.44 = 1 to have the LoopsInput in
percent of one full turn. ENHANCEDINPUTS.43 = 1 to have the Peak
current enabled and finally ENHANCEDINPUTS.47 = 1 to validate the new
loops command and start the movement.
 ENHANCEDINPUTS (0x4D) = 0x98 36 00 40 00 00

 6 Bytes Options LoopsInput
 LCounter

If the LoopsInput were in pulses (56’508*25% = 14127 pulses = 0x372F)
and not in percent, the command would be:
 ENHANCEDINPUTS (0x4D) = 0x88 36 00 00 37 2F

 6 Bytes Options LoopsInput
 LCounter

112 / 209

15. Register management

Memory organization

The user needs to know that a new register value sent through the
communication port is loaded to the running parameters in RAM and used
for the current process. All these parameters are lost at power-down. It is
necessary to save them to “User Parameters” or “Factory Parameters” with
the corresponding function.

Action number and description:

 SAVEUSERPARAMETERS (0x03) function

 During standard power-up or calling
 RESTOREUSERPARAMETERS (0x04) function

 RESTOREFACTORYPARAMETERS (0x05)
function

 SAVEFACTORYPARAMETERS (0x06) function
 [for integrator engineers only]

 By pressing “SOS Button(*)” after power-up

 By pressing “SOS Button(*)” during power-up

(*) For FMod-IPECMOT 48/10 T1 & T2 only

EEPROM

FACTORY Parameters
Saved

2 3

EEPROM

USER Parameters
Saved

4 1

ROM
SOS IP

address (*)

5

Communication port
(TCP/UDP)

[Web page or Software]

RAM

RUNNING Parameters

W
R

IT
E

R
E
A

D

V
O

L
A

T
IL

E
 D

A
T

A
.

N
O

N
 V

O
L

A
T

IL
E

 D
A

T
A

.
P

R
O

C
E

S
S

E
S

1

2

3

5

3 5 1 + +

4 1 +

113 / 209

Full description of registers

List of registers

Address Bytes Name #Page

General Information
0x00 4 TYPE 120
0x01 4 VERSION 121
0x02 0 (fct) RESETCPU 122
0x03 0 (fct) SAVEUSERPARAMETERS 123
0x04 0 (fct) RESTOREUSERPARAMETERS 124
0x05 0 (fct) RESTOREFACTORYPARAMETERS 125
0x06 0 (fct) SAVEFACTORYPARAMETERS 126
0x07 4 VOLTAGE 127
0x08 4 WARNING 128
0x0B (11) 4 NBPOWERUP 130
0x0C (12) 4 TIMEINSERVICE 131
0x0D (13) 2 STANDBYTIMER 132

Communication
0x10 (16) 4 COMOPTIONS 133
0x11 (17) 6 ETHERNETMAC 134
0x12 (18) 4 IPADDRESS / I2CADDRESS 135
0x13 (19) 4 SUBNETMASK 136
0x14 (20) 1 TCPTIMEOUT 137
0x15 (21) 16 DEVICENAME 138
0x1A (26) 1 TCPCONNECTIONSOPENED 139

General configuration
0x20 (32) 1 REGULATIONMODE 140
0x21 (33) 4 INPUT 142
0x22 (34) 4 INPUTOFFSET 144
0x23 (35) 4 INPUTOFFSETMEASURED 145
0x24 (36) 4 INPUTMIN 146
0x25 (37) 4 INPUTMAX 147
0x26 (38) 4 POSITION 148
0x27 (39) 4 POSITIONOFFSET 149
0x28 (40) 4 SPEED 150
0x29 (41) 4 TEMPERATURE 152
0x2A (42) 4 CURRENTMAX 153
0x2B (43) 6 CURRENTSENSE 155
0x2C (44) 4 OPTIONS 156
0x2D (45) 1 LOOPTIME 159
0x2E (46) 4 OUTPUTVOLTAGEMAX 160
0x2F (47) 4 DISSIPATIONVOLTAGE 161

114 / 209

List of registers (continued):
Address Bytes Name #Page

PID group
0x30 (48) 4 DESIRED 162
0x31 (49) 4 FEEDBACK 163
0x32 (50) 4 COMMAND 164
0x33 (51) 4 KP 165
0x34 (52) 4 KI 166
0x35 (53) 4 KD 167
0x36 (54) 4 ANTIRESETWINDUP 168
0x37 (55) 4 INTEGRALDELTA 169
0x38 (56) 4 DERIVATIONOFDELTA 170
0x39 (57) 1 AUTO-TUNING 171
0x3A (58) 2 SKIPPULSESTIMER 172

Trajectory group
0x3B (59) 4 TRACKPOSITION 176
0x3C (59) 4 KPPTRACK 176
0x3D (59) 4 TRACKMAXSPD 176

0x40 (64) 4 ACCELERATION 176
0x41 (65) 4 DECELERATION 177
0x42 (66) 4 TOPSPEED 178
0x43 (67) 4 DEADZONE 179
0x44 (68) 4 ENCODERSRATIO 180

Homing group
0x47 (71) 4 HOMINGSTARTINPUT 182
0x48 (72) 4 HOMINGOPTIONS 183
0x49 (73) 0 (fct) HOMING 186
0x4A (74) 0 (fct) STOPHOMING 187
0x4B (75) 4 HOMINGPOSITION 188
0x4C (76) 4 HOMINGINPUT 189

Loops group
0x46 (70) 2 LOOPSREST 181
0x4D (77) 6 ENHANCEDINPUTS 190
0x4E (78) 12 LOOPSCONFIG 192
0x4F (79) 8 ENHANCEDPARAMS 193

Limits group
0x50 (80) 4 LIMIT1SETUP 194
0x51 (81) 1 LIMIT1REGULATIONMODE 195
0x52 (82) 4 LIMIT1POSITION 196
0x53 (83) 4 LIMIT1XINPUT 197
0x55 (85) 2 IOCFG 198
0x56 (86) 4 IOSTATE 199
0x58 (88) 4 LIMIT2SETUP 200

115 / 209

0x59 (89) 1 LIMIT2REGULATIONMODE 201
0x5A (90) 4 LIMIT2POSITION 202
0x5B (91) 4 LIMIT2XINPUT 203

116 / 209

General configuration 2
0x60 (96) 4 DISSIPTEMPERATURE 204

Feed forward group
0x61 (97) 4 VFFOFFSET 205
0x62 (98) 4 KVFF 206
0x63 (99) 4 KAFF 207
0x64 (100) 4 KDFF 208

117 / 209

Register name

FM
o
d
-I
P
E
C

M
O

T
 T

2

FM
o
d
-I
P
E
C

M
O

T
 T

1

FM
o
d
-I
2
C

4
8
5
E
C

M
O

T

FM
o
d
-I
2
C

D
C

M
O

T
 D

B

FM
o
d
-I
2
C

D
C

M
O

T

S
L
P

FM
o
d
-I
2
C

ST
E
P
M

O
T

S
L
P

General information

TYPE
VERSION
RESETCPU
SAVEUSERPARAMETERS
RESTOREUSERPARAMETERS
RESTOREFACTORYPARAMETERS
SAVEFACTORYPARAMETERS
VOLTAGE
WARNING
NBPOWERUP
TIMEINSERVICE
STANDBYTIMER
Communication

COMOPTIONS
ETHERNETMAC
IPADDRESS
I2CADDRESS

SUBNETMASK
TCPTIMEOUT
DEVICENAME
TCPCONNECTIONSOPENED
General configuration

REGULATIONMODE
INPUT
INPUTOFFSET
INPUTOFFSETMEASURED
INPUTMIN
INPUTMAX
POSITION
POSITIONOFFSET
SPEED
TEMPERATURE
CURRENTMAX
OPTIONS
LOOPTIME
OUTPUTVOLTAGEMAX
DISSIPATIONVOLTAGE

118 / 209

Register name

FM
o
d
-I
P
E
C

M
O

T
 T

2

FM
o
d
-I
P
E
C

M
O

T
 T

1

FM
o
d
-I
2
C

4
8
5
E
C

M
O

T

FM
o
d
-I
2
C

D
C

M
O

T

D
B

FM
o
d
-I
2
C

D
C

M
O

T

S
L
P

FM
o
d
-I
2
C

ST
E
P
M

O
T

S
L
P

PID group

DESIRED
FEEDBACK
COMMAND
KP
KI
KD
ANTIRESETWINDUP
INTEGRALDELTA
DERIVATIONOFDELTA
AUTO-TUNING
SKIPPULSESTIMER
Feed Forward group

VOFFSET
KVFF
KAFF
KDFF
Trajectory group

TRACKPOSITION
KPPTRACK
TRACKMAXSPD
ACCELERATION
DECELERATION
TOPSPEED
DEADZONE
ENCODERSRATIO

Homing group

HOMINGSTARTINPUT
HOMINGOPTIONS
HOMING
STOPHOMING
HOMINGPOSITION
HOMINGINPUT
Loops group

LOOPSREST
ENHANCEDINPUTS
LOOPSCONFIG
ENHANCEDPARAMS
Limits group

LIMIT1SETUP

119 / 209

LIMIT1REGULATIONMODE
LIMIT1POSITION
LIMIT1XINPUT
IOCFG
IOSTATE
LIMIT2SETUP
LIMIT2REGULATIONMODE
LIMIT2POSITION
LIMIT2XINPUT

120 / 209

TYPE

Register Address Register Name Function Read/Write control

0x00 TYPE Product ID Read only

Register Size Register structure

4 Bytes Unsigned Int 16 bits (HH-HL) TYPE Unsigned Int 16 bits (LH-LL) MODEL

Description:
Product identifier composed of a Type and Model number.
Defines the type of peripheral.
Normally different TYPE modules are not software compatible.

Example:
Device with TYPE = 0x00060001 means Type=6 (6 = EC Motor driver),
Model = 1.

Limits:
None

Active:
Each time the processor is running

121 / 209

VERSION

Register Address Register Name Function Read/Write control

0x01 VERSION Software ID Read only

Register Size Register structure

4 Bytes 2bytes Hardware version (HH-HL) 2 bytes Firmware version (LH-LL)

Description:
Hardware identifier composed of a Version and Revision number.

Firmware identifier composed of a Version and Revision number.
Normally same Version with different Revision is backward compatible.

Example:
VERSION 0x0108050E
Hardware = 0x0108 = Version 1.8
Firmware = 0x050E = Version 5.14

Firmware 5.14 = Version 5, Revision 14 (0x0E) is compatible with all earlier
revisions of the same version (ver 5.0 to 5.14) but has new functionalities
(deactivated by default) or code optimizations.

Limits:
None

Active:
Each time the processor is running

122 / 209

RESET CPU

Function Address Function Name Function Read/Write control

0x02 RESETCPU Restart processor Write only

Register Size Register structure Unit

0 Byte none none

Description:
Reboots the card. Communication will be lost.

Active:
Each time the processor is running.

123 / 209

SAVE USER PARAMETERS

Function Address Function Name Function Read/Write control

0x03 SAVEUSERPARAMETERS
Saves all in
EEPROM

Write only

Register Size Register structure Unit

0 Byte none none

Description:
Saves the following parameters to EEPROM user space:

0x0D STANDBYTIMER (*) 0x48 HOMINGOPTIONS
 0x4B HOMINGPOSITION
0x10 COMOPTIONS 0x4C HOMINGINPUT
0x12 IPADDRESS/I2CADDRESS 0x4E LOOPSCONFIG
0x13 SUBNETMASK (*) 0x4F ENHANCEDPARAMS
0x14 TCPTIMEOUT (*)
0x15 DEVICENAME 0x50 LIMIT1SETUP
 0x51 LIMIT1REGULATIONMODE
0x24 INPUTMIN 0x52 LIMIT1POSITION
0x25 INPUTMAX 0x53 LIMIT1XINPUT
0x2A CURRENTMAX 0x55 LIMIT1XINPUT (*)
0x2C OPTIONS 0x58 LIMIT2SETUP
0x2D LOOPTIME (*) 0x59 LIMIT2REGULATIONMODE
0x2E OUTPUTVOLTAGEMAX (*) 0x5A LIMIT2POSITION
 0x5B LIMIT2XINPUT
0x33 KP (*)
0x34 KI (*) 0x61 LIMIT2XINPUT (*)
0x35 KD (*) 0x62 LIMIT2XINPUT (*)
0x36 ANTIRESETWINDUP (*) 0x63 LIMIT2XINPUT (*)
0x3A SKIPPULSESTIMER (*) 0x64 LIMIT2XINPUT (*)

0x40 ACCELERATION
0x41 DECELERATION
0x42 TOPSPEED
0x43 DEADZONE (*)
0x44 ENCODERSRATIO (*)
0x47 HOMINGSTARTINPUT (*)

(*) Not active on all controllers

Active:
Each time the processor is running.
For safety purposes, set REGULATIONMODE to Brake mode or driver open
mode before running this function.
Do not change any of these parameters while saving!

(*) In FMod-I2CDCMOT SLP 48/1 and I2CSTEPMOT SLP 35/1 & 35/0.1 user
and factory parameters are the same.

124 / 209

RESTORE USER PARAMETERS

Function Address Function Name Function Read/Write control

0x04 RESTOREUSERPARAMETERS
Restores saved
values

Write only

Register Size Register Structure Unit

0 Byte none none

Description:
Restores the user parameters from EEPROM.

See SAVEUSERPARAMETERS (0x03) register list.

Active:
Each time the processor is running.
For safety purposes, set REGULATIONMODE to Brake mode or driver open
mode before running this function.

(*) In FMod-I2CDCMOT SLP 48/1 and I2CSTEPMOT SLP 35/1 & 35/0.1 user
and factory parameters are the same.

125 / 209

RESTORE FACTORY PARAMETERS

Function
Address

Function Name Function Read/Write control

0x05 RESTOREFACTORYPARAMETERS Factory default Write only

Register Size Register Structure Unit

0 Byte none none

Description:
Restores factory parameters.

See SAVEUSERPARAMETERS (0x03) register list.

Active:
Each time the processor is running,
SAVEUSERPARAMETERS has to be run after setting this function so that the
next reboot will retain the same parameters.
For safety purposes, set REGULATIONMODE to Brake mode or driver open
mode before running this function.

(*) In FMod-I2CDCMOT SLP 48/1 and I2CSTEPMOT SLP 35/1 & 35/0.1 user
and factory parameters are the same.

126 / 209

SAVE FACTORY PARAMETERS

Function Address Function Name Function Read/Write control

0x06 SAVEFACTORYPARAMETERS
Saves factory
default

Write only

Register Size Register Structure Unit

0 Byte none none

Description:
This function is reserved for integrator engineers, and not for the end user.
Used when all parameters have been approved for an application. It saves in
EEPROM all configurable registers for both factory parameters and user
parameters.
This function already includes the SAVEUSERPARAMETERS function.

See SAVEUSERPARAMETERS (0x03) register list.

Active:
Each time the processor is running.
For safety purposes, set REGULATIONMODE to Brake mode or driver open
mode before running this function.
Do not change any of these parameters while saving!

(*) In FMod-I2CDCMOT SLP 48/1 and I2CSTEPMOT SLP 35/1 & 35/0.1 user
and factory parameters are the same.

127 / 209

VOLTAGE

Register Address Register Name Function Read/Write Control

0x07 VOLTAGE
Power module
voltage

Read only

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) Volt

Description:
Input Voltage

Limits:
Max 0x7FFFFFFxx = 32’767.996
Min 0x000000xx = 0.0
Step 0x000001xx = 0.004

Example:
When read 0x00234567 = 2’311’527 , Voltage = 35.27 (2’311’527/65’536)

Information:
Refer to register REGULATIONMODE (0x20) to have more information on
the voltage limitations influencing the REGULATIONMODE.

Active:
Each time the processor is running.

128 / 209

WARNING

Register address Register Name Function Read/Write Control

0x08 WARNING Bit to bit state R/W

Register Size Register Structure Unit

4 Bytes Unsigned Int 32 bits , each bit independent none

Description:
Each information/warning/error is made up of 2 bits: the first one shows the
current state, the next one shows whether this state has appeared
previously.
Only the bits that show the past states can be cleared by writing
0x00000000 to the WARNING register.

Bits when set
Warnings.0 Enable pin is not activated. REGULATIONMODE is set to Brake mode.
Warnings.1 Minimum once in the past the Enable pin was not activated (if exists).

(*) Not implemented in FMod-I2CDCMOT DB 48/1.5 & SLP 48/1 and FMod-
I2CSTEPMOT SLP 35/1 & 35/0.1

Warnings.2 Under-voltage of the power input.
Warnings.3 Previously active, it can be cleared by user.

Warnings.4 Over-voltage of the power input.
Warnings.5 Previously active, it can be cleared by user.

Warnings.6 Speed/position mode only, when the INPUT+/- DEADZONE has not been

reached (DEADZONE is 0 for FMod-I2CSTEPMOT SLP 35/1 & 35/0.1).
Warnings.7 Previously active, it can be cleared by user.

Warnings.8 Absolute value of COMMAND register is saturated to 0x0000FFFF (65535)
Warnings.9 Previously active, it can be cleared by user.
 (*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Warnings.10 While HOMING is running.
Warnings.11 If home has not been found.

Warnings.12 Current specified in CURRENTMAX is reached, it stops increasing the

integrator if the OPTIONS.9 bit is ‘1’. This bit is not valid when
REGULATIONMODE set to 0=”brake”, or 1=“driver open”.

Warnings.13 Previously active, it can be cleared by user.
(*) Not implemented in FMod-I2CDCMOT DB 48/1.5 & SLP 48/1 and FMod-
I2CSTEPMOT SLP 35/1 & 35/0.1

Warnings.14 Limit1 pin (if present) reaches its action state.
Warnings.15 Previously active, it can be cleared by user.

Warnings.16 Limit2+ pin (if present) reaches its action state.
Warnings.17 Previously active, it can be cleared by user.

129 / 209

Warnings.18 Over-temperature state, reduce the output current to 75% of its value when

temperature > 115°C, 50% when > 120°C, 25% when > 125°C, 0% when >
130°C.

Warnings.19 Previously active, it can be cleared by user.
(*) Not implemented in FMod-I2CDCMOT DB 48/1.5 & SLP 48/1 and FMod-
I2CSTEPMOT SLP 35/1 & 35/0.1

Warnings.20 Motor current ripple reaches CURRENMAX (0x2A). Hardware power

limitation is reached: increase CURRENMAX, reduce ACCELERATION, else
regulation could not give achive its best result.

Warnings.21 Previously active, it can be cleared by user.

Warnings.22 Device is currently dissipating.
Warnings.23 Previously active, it can be cleared by user.

(*) Not implemented in FMod-IPECMOT 48/10 T1, FMod-I2CDCMOT DB 48/1.5
& SLP 48/1 and FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Warnings.24 Fault on motor driver.
Warnings.25 Previously active, it can be cleared by user.

(*) Not implemented in FMod-I2CDCMOT DB 48/1.5 & SLP 48/1 and FMod-
I2CSTEPMOT SLP 35/1 & 35/0.1

Warnings.26 Driver with encoder Index line only, state of Index line (resfresh each

LoopTime). If duration of index line is shorter than LoopTime, some Index
value would be skipped (missing some Index). Use it at low speed only.

Warnings.27 Previously active, it can be cleared by user.

Warnings.28-31 Reserved

Default: bits 31 -> 0
0x00000000

Active:
Each time the processor is running.

130 / 209

NB POWER UP

Register address Register Name Function Read/Write Control

0x0B (11) NBPOWERUP
Number of power
up in device’s life

Read only

Register Size Register Structure Unit

4 Bytes Unsigned Int 32 bits none

(*) Since firmware version 4.0 for FMod-IPECMOT 48/10 T1
(*) Since firmware version 5.0 for FMod-I2CDCMOT 48/1.5 DB

Description:
The number of power up is incremented each time the controller’s power
supply is in the specifications range. For controllers with two externally
applied power supply (Logic 5V and motor supply), both of them have to be
in the specifications range to increment the number of power up.

Limits:
Min 0x00 00 00 00 = 0
Max 0xFF FF FF FF = 4’294’967’295

Active:
Each time the processor is running

131 / 209

TIME IN SERVICE

Register address Register Name Function Read/Write Control

0x0C TIMEINSERVICE
Time in service in
device’s life

Read only

Register Size Register Structure Unit

4 Bytes Unsigned Int 32 bits Seconds

(*) Since firmware version 4.0 for FMod-IPECMOT 48/10 T1
(*) Since firmware version 5.0 for FMod-I2CDCMOT 48/1.5 DB

Description:
The TIMEINSERVICE register is incremented every second when the
controller is not in Standby mode.

Limits:
Min 0x00 00 00 00 = 0 seconds
Max 0xFF FF FF FF = 4’294’967’295 seconds = ~136 years

Active:
Each time the processor is running. It is saved in EEprom each 18hr (65’536
sec).

132 / 209

STANDBY TIMER

Register address Register Name Function Read/Write Control

0x0D STANDBYTIMER
Power consumption
management

R/W

Register Size Register Structure Unit

2 Bytes Unsigned Int 16 bits milliseconds

(*) For FMod-I2CDCMOT SLP 48/1 and FMod-I2CSTEPMOT SLP 35/x

Description:
It is the time after which the controller is put in Standby mode after reaching
its goal position in Position Control mode.

It starts decrementing a timer when POSITION is inside [INPUT-DEADZONE;
INPUT+DEADZONE] (DEADZONE = 0 for FMod-I2CSTEPMOT SLP 35/x).

To use this feature, bit OPTIONS.17 (register address is 0x2C) has to be set
to ‘1’.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Default:
0x3E8 = 1’000 milliseconds

Limits:
Min 0x00 00 = 0 milliseconds
Max 0x7F FF = 32’767 milliseconds = 32.767 seconds

Active:
In position control/trajectory mode and when OPTIONS.17 bit is set to ‘1’.

133 / 209

COM OPTIONS

Register Address Register Name Function Read/Write Control

0x10 (16) COMOPTIONS
Communication
options

Read/Write

Register Size Register Structure Unit

4 Bytes 32 individual bits none

Description:
This register is reserved for future use.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

134 / 209

ETHERNET MAC

Register Address Register Name Function Read/Write Control

0x11 (17) ETHERNETMAC
Hardware network
ID

Read only

Register Size Register Structure Unit

6 Bytes 6 x Unsigned Bytes none

(*) For TCP/IP interface controllers.

Description:
A standard hardware unique identifier (worldwide) for each device on an
Ethernet network.

Note:
If the user writes to this register, the MAC address will not be modified. This
register is available only for information purposes.

135 / 209

IP ADDRESS / I2C ADDRESS

Register Address Register Name Function Read/Write Control

0x12 (18)
IPADDRESS /
I2CADDRESS

Network ID Read/Write

Register Size Register Structure Unit

4 Bytes 4 x Unsigned Bytes none

(*) For TCP/IP interface controllers
Description:
Network identifier used for TCP/IP and UDP/IP.
The values 255 (0xFF) and 0 (0x00) are reserved for broadcast and network
addresses and should not be used in this register.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Notes:
The module will change to a new IP address only when all of its
communication ports are closed.
Do not forget to use the SAVEUSERPARAMETERS command.

Default IP address value:
169.254.5.5

Example:
For the IP=192.168.16.14 (0xC0, 0xA8, 0x10, 0x0E), write 0xC0A8100E to
IPADDRESS.

(*) For I2C interface controllers
Description:
Network identifier of 7bits used for I2C bus, without R/W bit.
Only the least significant byte is used for the address. Value can be [8-119],
[0x08-0x77].
Since the value is Hardware coded (I2C address lines 0-7), writing in this
register will not affect the effective I2C address.

Limits of I2C ID:
Min = 0x08 (8)
Max = 0x77 (119)
Because b'0000xxx' and b'1111xxx' are reserved for I2C specific actions.
If a wrong ID is coded, the device will automatically use its default value
0x55.

136 / 209

SUBNET MASK

Register Address Register Name Function Read/Write Control

0x13 (19) SUBNETMASK IP subnet mask Read/Write

Register Size Register Structure Unit

4 Bytes 4 x Unsigned Bytes none

(*) For TCP/IP interface controllers

Description:
Network IP subnet mask used for TCP/IP and UDP/IP.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Notes:
The module will change for a new subnet mask only when all of its
communication ports are closed.
Do not forget to use the SAVEUSERPARAMETERS command.

If you do not want to use subnets, use the following subnet mask when IP
address leftmost byte is:
>0 and <=127 : 255.0.0.0 (Class A addresses)
>127 and <=191 : 255.255.0.0 (Class B addresses)
>191 and <=223 : 255.255.255.0 (Class C addresses)

Default value:
255.255.0.0

Example:
For the IP=10.2.6.45 and subnet mask = 255.255.0.0:
IP address class = A netID = 10, subNetID = 2 and hostID = 6.45

137 / 209

TCP TIMEOUT

Register Address Register Name Function Read/Write Control

0x14 (20) TCPTIMEOUT
Timeout for TCP
connection

Read/Write

Register Size Register Structure Unit

1 Byte Unsigned Int 8 bits sec

(*) For TCP/IP interface controllers

Description:
The TCP timeout is a value (in seconds) after which the user will be
disconnected if the board has not been accessed in the meanwhile.

If the value is 0, the TCP timeout is deactivated. In this case however, if the
client crashes during connection, the communication will never be closed as
far as the module is concerned! Because a maximum of 4 communications
are allowed at the same time on the module, one of them will be blocked. If
the client crashes four times, all 4 communications will be blocked and the
module will have to be reset.

The timeout for each TCP/IP connection is reloaded when there is traffic
through the port.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Default value:
30

Limitations:
Max value: 255

138 / 209

DEVICE NAME

Register Address Register Name Function Read/Write Control

0x15 (21) DEVICENAME Device’s ASCII name Read/Write

Register Size Register Structure Unit

16 Bytes 16 (only) x Unsigned Bytes (CHAR) none

Description:
Name and/or description of the device.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Example:
For the name “Hello Module”; extend to 16 Bytes the name: “Hello
Module”+5x space=16 Byte.
So write 0x48656C6C 6F204D6F 64756C65 20202020.

139 / 209

TCP CONNECTIONS OPENED

Register Address Register Name Function Read/Write Control

0x1A (26) TCPCONNECTIONSOPENED
Number of
opened TCP
connections

Read only

Register Size Register Structure Unit

1 Byte Unsigned Int 8 bits none

(*) For TCP/IP interface controllers

Description:
Number of users connected to the card using TCP.
Value can be 0 to 4.

140 / 209

REGULATION MODE

Register Address Register Name Function Read/Write Control

0x20 (32) REGULATIONMODE
Select regulation
mode

R/W

Register Size Register Structure Unit

1 Byte Unsigned Int 8 bits none

Description:
(*) For all brushed and brushless motor controllers
Selects the regulation mode from:
0x00 Brake (brakes and stops the motor)
0x01 DriverOpen (disconnects motor pins from ground and

power supply)
0x02 OpenLoop (input reg is directly converted to PWM ouputs)
0x03 WaitMode (continues actual output (PWM), without

regulation)
0x04 SpeedControl (acceleration to input speed, with PID

algorithm)
0x05 PositionControl (acceleration, top speed and deceleration ramps

with PID)

(*) For FMod-I2CDCMOT SLP 48/1
Same as above with the addition of:
0x06 StandByMode Motor controller goes into low power mode,

disables the output driver.

(*) For FMod-I2CSTEPMOT SLP 35/1 & 35/0.1
Selects the regulation mode from:
0x00 Brake (brakes and stops the motor)
0x01 DriverOpen (disconnects motor pins from ground and

power supply)
0x02 Not implemented, goes in DriverOpen mode
0x03 WaitMode Continues actual phases actuation
0x04 SpeedControl Acceleration to input speed
0x05 PositionControl Acceleration, top speed and deceleration ramps
0x06 StandByMode Motor controller goes into low power mode,

disables the output driver.
Limits:
Min = 0
Max = 6
If REGULATIONMODE > 6, the motion mode is DriverOpen.

Voltage limitations:
(*) For FMod-IPECMOT 48/10 T2

141 / 209

If VOLTAGE is below 7.0 V, REGULATIONMODE is automatically set to Brake
mode.
If VOLTAGE is higher than 56.0 V, REGULATIONMODE is automatically set to
DriverOpen mode.

(*) For FMod-IPECMOT 48/10 T1 and FMod-I2C485ECMOT DB 48/10
If VOLTAGE is below 12.0 V, REGULATIONMODE is automatically set to
Brake mode.
If VOLTAGE is higher than 56.0 V, REGULATIONMODE is automatically set to
DriverOpen mode.

(*) For FMod-I2CDCMOT DB 48/1.5 and FMod-I2CDCMOT SLP 48/1
If VOLTAGE is below 9.0 V, REGULATIONMODE is automatically set to Brake
mode.
If VOLTAGE is higher than 54.0 V, REGULATIONMODE is automatically set to
DriverOpen mode.

(*) For FMod-I2CSTEPMOT SLP 35/1 & 35/0.1
If VOLTAGE is below 9.0 V, REGULATIONMODE is automatically set to
DriverOpen mode.
If VOLTAGE is higher than 38.0 V, REGULATIONMODE is automatically set to
DriverOpen mode.

Default:
(*) For brushed and brushless motor controllers
After Power ON, REGULATIONMODE is in Brake mode.

(*) For stepper motor controllers
After Power ON, REGULATIONMODE is in DriverOpen mode

(*) For FMod-I2CSTEPMOT SLP 35/x and FMod-I2CDCMOT SLP 48/1
The default value mentioned above is valid except when bit OPTIONS.18
(StandbyAtWakeUp) is set to ‘1’. In that case, the regulation mode is set to
Standby mode at power-up.

Active:
Each time the processor is running

142 / 209

INPUT

Register Address Register Name Function Read/Write Control

0x21 (33) INPUT Master register Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Variable

Description:
This register is the input (if needed) for every REGULATIONMODE.

Active:
When REGULATIONMODE = Open Loop, Position Control, Speed Control,
or Wait modes.

REGULATIONMODE = Open Loop:
(*) For brushed and brushless motor controllers
INPUT unit is % of PWM

Max 0x0000FFFF = 65535 PWM = 100% (65535/65536)
Zero 0x00000000 = 0 PWM = 0% (0/65536)
Min 0xFFFF0001 = -65535 PWM =-100% (-65535/65536)

Higher and lower values are automatically saturated when converted to
PWM

REGULATIONMODE = Position Control
(*) For brushed and brushless motor controllers
INPUT is the position to be reached, and the unit is “pulse”.

(*) For stepper motor controllers
 INPUT is the position to be reached, and the unit is “µpulse” (1/256 of a full
step).

Max 0x7FFFFFFF = 2’147’483'647 pulses or µpulses
Min 0x80000000 = -2’147’483'648 pulses or µpulses

REGULATIONMODE = Speed Control
(*) For brushed and brushless motor controllers
INPUT is the speed to be reached, and the unit is in pulses/sec.

(*) For stepper motor controllers
INPUT is the speed to be reached, and the unit is “µpulse/sec” (1/256 of a
full step/sec).

143 / 209

Max 0x7FFFFFFF = 2’147’483'647 pulses/s or µpulses/s
Min 0x80000000 = -2’147’483'648 pulses/s or µpulses/s

Default:
0x00000000 = 0

144 / 209

INPUT OFFSET

Register Address Register Name Function Read/Write Control

0x22 (34) INPUTOFFSET Master register offset Write only

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Variable

Description:
This register is added to the INPUT register in each regulation mode, and
immediately cleared.
This register enables the modification of the INPUT register without knowing
its value.
See INPUTMIN (0x24) and INPUTMAX (0x25) registers to define the range
of the INPUT.

Active:
When HOMING is not running, otherwise it is ignored and cleared.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
0x00000000 = 0

145 / 209

INPUT OFFSET MEASURED

Register Address Register Name Function Read/Write control

0x23 (35) INPUTOFFSETMEASURED
New INPUT value
with local
parameter

Write only

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Variable

Description:
This register is added to the measured value POSITION or SPEED, depending
on the actual regulation mode. When done, INPUTOFFSETMEASURED is
immediately cleared. The result is copied to the INPUT register.
This register allows for a new INPUT value to be set while not knowing
externally the real-time position or the speed value.
See INPUTMIN (0x24) and INPUTMAX (0x25) registers to define the range
of the INPUT.

Active:
Only when its value is not equal to 0.
When HOMING is not running, otherwise it is ignored and cleared.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
0x00000000 = 0

146 / 209

INPUT MIN

Register Address Register Name Function Read/Write Control

0x24 (36) INPUTMIN
Lowest INPUT
accepted

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Variable

Description:
This register is a software limitation of the INPUT (0x21) reg.
If INPUT < INPUTMIN then INPUT = INPUTMIN.
With the complementary INPUTMAX (0x25) register, a range of INPUT
value can be determined.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
Set to the minimum 0x80000000, therefore never influences the INPUT
value.

Active:
Each time the processor is running, but ignored during Homing!

147 / 209

INPUT MAX

Register Address Register Name Function Read/Write Control

0x25 (37) INPUTMAX
Highest INPUT
accepted

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Variable

Description:
This register is a software limitation of the INPUT (0x21) reg.
If INPUT > INPUTMAX then INPUT = INPUTMAX.
With the complementary INPUTMIN (0x24) register, a range of INPUT value
can be determined.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
Set to the maximum 0x7FFFFFFF, therefore never influences the INPUT
value.

Active:
Each time the processor is running, but ignored during Homing!

148 / 209

POSITION

Register Address Register Name Function Read/Write Control

0x26 (38) POSITION
Signed pulses or
µpulses counter

R/W

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulses or
µPulses

Description:
Write to this register to set a new position (calibration). See the
POSITIONOFFSET (0x27) register for recalibration.
When read, it shows the evolution of the position.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
After Power ON, POSITION is cleared (0x00000000). If OPTIONS.6 bit is set,
the POSITION before the last shutdown is reloaded.

Active:
Each time the processor is running

149 / 209

POSITION OFFSET

Register Address Register Name Function Read/Write Control

0x27 (39) POSITIONOFFSET
Calibrate POSITION
reg.

Write only (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulses or
µPulses

Description:
Write to this register to shift the POSITION register with an offset.
When the sum of POSITIONOFFSET and POSITION is completed,
POSITIONOFFSET is automatically cleared.
It is preferable to write to this register instead of writing to the POSITION
register when the motor moves, so that the pulses will never be lost.

Example: if for an application, it is necessary to reset the position after each
complete rotation.
When POSITION > (1 complete rotation),
write – (1 complete rotation) to POSITIONOFFSET,

When POSITION < - (1 complete rotation),
write + (1 complete rotation) to POSITIONOFFSET.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Active:
Each time the processor is running

150 / 209

SPEED

Register Address Register Name Function Read/Write Control

0x28 (40) SPEED
Time-based pulse
count

Read only

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulses/sec
or
µPulses/sec

Description:
Represents the number of pulses or µpulses that is counted during 1 second.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

(*) For brushed and brushless motor controllers
Accuracy depends on the speed refresh rate, which depends on regulation
LOOPTIME (0x2D).

For example: with a refresh rate of 1000Hz, 1 pulse added or missing during
the time of 1ms represents +/-1000 pulses during 1 second (1x 1000 =
1000). With a slow refresh rate (LOOPTIME), you will have a good speed
accuracy, but the regulation loop will perform slower.

(*) For FMod-IPECMOT 48/10 T2
When using the dual encoder mode, the speed is always calculated using the
encoder1 (closest to the motor).

(*) For stepper motor controllers
Since there is no encoder, the speed is not a measured value; it is the real-
time value of what is applied to the motor phases. The LOOPTIME (0x2D)
register is not used, so it as no effect on the speed.

Example for brushed or brushless motors:
The motor runs at a maximum speed (PWM saturated) of 123’456 pulses/s:

20Hz : 123’456 +-20 0.016% error (max pulses/ speed refresh)
200Hz : 123’456 +-200 0.16% error
2000Hz : 123’456 +-2000 1.6% error

An encoder with more pulses/rotation allows for better accuracy! !

If OPTIONS.2 (0x2C) bit is set, the SPEED has a 10x better accuracy, without
changing LOOPTIME.

151 / 209

Example for stepper motors:
A speed of 307’200 µpulses/sec represents 1200 full steps/sec (1 full step =
256 µpulses). With a 200 full steps per revolution stepper motor, it will
rotate at 6 turn/sec or 360 rpm.

Active:
Each time the processor is running

152 / 209

TEMPERATURE

Register Address Register Name Function Read/Write Control

0x29 (41) TEMPERATURE Power bridge °C Read only

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) C°

(*) Not implemented in FMod-I2CDCMOT DB 48/1.5 & SLP 48/1 and FMod-
I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Gives the temperature of the power bridge only.
This value is used inside the device to reduce the current output at the
power bridge to prevent overheating destruction.

0< T° < ~90°C Normal temperature
90°C < T° < 115°C Critical temperature, but functioning
115°C < T° < 120°C Over-temperature state, reduce the output

current to 75% of its value
120°C < T° < 125°C Reduce the output current to 50% of its value
125°C < T° < 130°C Reduce the output current to 25% of its value
130°C < T° Reduce the output current to 0% of its value

Automatic re-enabling of the power bridge to its maximum value when T°
<113°C.

Limits:
Max 0x00960000 = 150°C
Min 0xFFD80000 = -40.0 °C

Example:
Other 0x00168000 = 1474560 22.5°C =(1474560/65536)

Active:
Each time the processor is running.

153 / 209

CURRENT MAX

Register Address Register Name Function Read/Write Control

0x2A (42) CURRENTMAX
Limits output
current

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) Ampere

Description:
Limits the output current for different reasons:
 Motor torque
 Motor heating (RxI²)

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
(*) For FMod-IPECMOT 48/10 T2
Max 0x000A0000 = 10.0 A (limited by TEMPERATURE)
Min 0x00000000 = 0.0 A
Step 0x00000640 = 0.025A

(*) For FMod-IPECMOT 48/10 T1 and FMod-I2C485ECMOT DB 48/10
Max 0x000F0000 = 15.0 A (limited by TEMPERATURE)
Min 0x00000000 = 0.0 A
Step 0x00000640 = 0.025A

(*) For FMod-I2CDCMOT DB 48/1.5 & FMod-I2CDCMOT SLP 48/1
Max 0x00020000 = 2.0 A
Min 0x00000000 = 0.0 A
Step 0x00000100 = 0.004 A

(*) For FMod-I2CSTEPMOT SLP 35/1
Max 0x00018000 = 1.5 A
Min 0x00000000 = 0.0 A
Step 0x00000100 = 0.004 A

(*) For FMod-I2CSTEPMOT SLP 35/0.1
Max 0x00002666 = 150 mA
Min 0x00000000 = 0.0 mA
Step 0x0000000A = 0.15 mA

Default:
(*) For FMod-IPECMOT 48/10 T1 & T2 and FMod-I2C485ECMOT DB 48/10
0x00050000 = 327680, current limitation 5 A (327680/65536)

154 / 209

(*) For FMod-I2CDCMOT DB 48/1.5 & SLP 48/1
0x00008000 = 32768 , current limitation 0.5 A (32768/65536)

(*) For FMod-I2CSTEPMOT SLP 35/1
0x00008000 = 32768 , current limitation 0.5 A (32768/65536)

(*) For FMod-I2CSTEPMOT SLP 35/0.1
0x0000CCC = 3276 , current limitation 0.05 A (3276/65536)

Active:
During every REGULATIONMODE. During Wait mode, CURRENTMAX is not
refreshed.

155 / 209

CURRENT SENSE

Register Address Register Name Function Read/Write Control

0x2B (43) CURRENTSENSE
Measurement of the
current in the motor
windings

Read only

Register Size Register Structure Unit

6 Bytes
Signed (2’s cplt) Int 8 (H) + 8 bits fixed point (L)
Signed (2’s cplt) Int 8 (H) + 8 bits fixed point (L)
Signed (2’s cplt) Int 8 (H) + 8 bits fixed point (L)

Ampere

(*) Implemented only in FMod-IPECMOT 48/10 T2

Description:
This register informs the user of the current actually flowing through the
motor windings. The current can be negative during regeneration of the
braking energy; the motor is acting as a generator.

CURRENTSENSE.[0-15] Actual value of the current through the

motor windings.

CURRENTSENSE.[16-31] Minimum value of the current through the

motor windings since the last read of this
register (CURRENTSENSE).

CURRENTSENSE.[32-47] Maximum value of the current through the

motor windings since the last read of this
register (CURRENTSENSE).

Limits:
CURRENTSENSE.[0-15], CURRENTSENSE.[16-31], CURRENTSENSE.[32-47]
Max 0x0F00 = 3'840 = 15A
Min 0xF100 = -3'840 = -15A

Active:
Each time the processor is running

156 / 209

OPTIONS

Register Address Register Name Function Read/Write Control

0x2C (44) OPTIONS Bit to bit settings Write (Read)

Register Size Register Structure Unit

4 Byte Unsigned Int 32 bits , each bit independent none

Description:
This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Bits when set
Options.0 Swap encoder1 pulse-inputs (e.g. if Channel A & B are not correctly wired).

This bit is not made to be changed on the fly.
 (*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Options.1 Invert the rotation of the motor (swap pulse-inputs and PWM-outputs). This

bit is not made to be changed on the fly.

Options.2 Better accuracy of speed measurement (x10), calculated in (x10) more time

(less real-time).
 (*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Options.3 Non-linear PID, decrease integration faster than increase it, may sometimes

cancel oscillations.
 (*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Options.4 PWM to 10 bits (35kHz) instead of 9 bits (69kHz).
 (*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Options.5 Pull-Up (0=Pull-Down) resistors on the Limit1Signal and Limit2Signal pins

Options.6 Save POSITION register to EEPROM when shut down occurs

(VOLTAGE<7.0V)

Options.7 Leakage of INTEGRALDELTA when stable (subtract 1/256 of its value each

LOOPTIME)
 (*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Options.8 Use hall sensors as encoders, option for brushless motors only
 (*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1 and FMod-

I2CDCMOT DB 48/1.5 & SLP 48/1

Options.9 Stops incrementing the integrator when CURRENTMAX is reached inside the

motor.
 (*) Not implemented in FMod-I2CDCMOT DB 48/1.5 & SLP 48/1 and FMod-

I2CSTEPMOT SLP 35/1 & 35/0.1

Options.10 Activate the use of a second encoder, for instance to counterbalance sliding

on the transmission attached to the motor.
 (*) Implemented only in FMod-IPECMOT 48/10 T2

157 / 209

Options.11 Swap encoder2 pulse-inputs (e.g. if Channel A & B are not correctly wired).
 (*) Implemented only in FMod-IPECMOT 48/10 T2

Options.12 Linear deadzone (in position trajectory mode only):
 0 : inside dead zone, desired speed is 0 (once goal reached or 0 speed

measured)
 1: inside dead zone, desired speed is linear with 1st ouside deadzone position

down to 0 at exact goal (INPUT). Example: DECELERATION = 1’000’000,
DEADZONE= 10, when POSITION = 11, DESIRED state (0x30) = sqrt
(2xDECELERATION)= 1414 pls/sec, here are some DESIRED values inside
deadzone (Pos 11 = 1414, Pos 10= 1285, Pos 5 = 642, Pos 1= 128, Pos 0 =
0

Options.13 2 I/Os on address bus
 2 most significant bits of address bus (RS485 or I2C) can be addresses or IOs.
 0: (default) the 2 bits are used for address selection only.
 1: 2 msb of address bus (RS485 or I2C) are set to 0, and 2 pins are used as IOs
 Theses 2 IOs are output or input, but inputs are only digital 0 or 255 level.
 When this bit is changed, SAVEUSERPARAMETERS and reset the device to

reload correct address.
 Only implemented on device that do not have independent IOs.
 (*) Implemented only in FMod-I2CDCMOT DB 48/1.5 and FMod-

I2C485ECMOT 48/10

Options.14 Reserved

Options.15 Reserved

Options.16 The dissipation voltage is adapted automatically; it stabilizes 3V above the

actual voltage, but not accepting too abrupt changes. Therefore dissipation is
active when a rapid increase of power voltage is measured, for instance
when braking suddenly from a high speed. If this bit is cleared, dissipation is
active when the power voltage is more than the value specified in
DISSIPATIONVOLTAGE (0x2F) register. More information at the chapter
“Dissipation” under “FMod-IPECMOT 48/10 T1 & T2” or “FMod-
I2C485ECMOT DB 48/10”.

 (*) Implemented only in FMod-IPECMOT 48/10 T2 and FMod-I2C485ECMOT
DB 48/10

Options.17 In position control mode, once the goal position is reached, automatically

put the card into Standby mode after a time specified in STANDBYTIMER
(0x0D) register.

 (*) Implemented only in FMod-I2CDCMOT SLP 48/1 and FMod-I2CSTEPMOT
SLP 35/1 & 35/0.1

Options.18 Regulation mode is Standby at the start-up of the card.
 (*) Implemented only in FMod-I2CDCMOT SLP 48/1 and FMod-I2CSTEPMOT

SLP 35/1 & 35/0.1

Options.19 Synchronize the actual position with the real position of the stepper motor.

If this bit is active and the actual position is 256 µpulses, it means that the
motor is physically on a full step (1 µpulse = 1/256 of a full step). Therefore
if the card goes into Standby mode, the motor should not move since it is
on a full step. Refer to chapter “Position and phases synchronisation” under
“FMod-I2CSTEPMOT SLP 35/1 & 35/0.1” for more informations.

 (*) Implemented only in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

158 / 209

Options.20 The synchronisation with bit OPTIONS.19 is made on 1 full step, otherwise it

is made on 4 full steps.
 (*) Implemented only in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Options.21 In position control mode, the input lowest byte is masked (=0) to always

have the input on a full step.
 (*) Implemented only in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Options.22-31 Reserved

Limits:
None

Default:
(*) For FMod-IPECMOT 48/10 T2
bits 31 -> 0 : 0x00, 0x00, b’00000000’ , b’11111000’

(*) For FMod-IPECMOT 48/10 T1
bits 31 -> 0 : 0x00, 0x00, b’00000000’ , b’11111000’

(*) For FMod-I2C485ECMOT DB 48/10
bits 31 -> 0 : 0x00, 0x00, b’00000000’ , b’11111000’

(*) For FMod-I2CDCMOT DB 48/1.5
bits 31 -> 0 : 0x00, 0x00, b’00000000’ , b’11111100’

(*) For FMod-I2CDCMOT SLP 48/1
bits 31 -> 0 : 0x00, 0x00, b’00000000’ , b’10111100’

(*) For FMod-I2CSTEPMOT SLP 35/1 & 35/0.1
bits 31 -> 0 : 0x00, b’00010000’, 0x00, b’00100000’

Active:
Each time the processor is running. OPTIONS.3 and OPTIONS.7 only when
PID in use.

159 / 209

LOOPTIME

Register Address Register Name Function Read/Write Control

0x2D (45) LOOPTIME
Regulation refresh
rate

Write (Read)

Register Size Register Structure Unit

1 Byte Unsigned Int 8 bits Time

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Refreshes rate of POSITION, SPEED and regulation loops.

Value Time Refresh rate
0x00 50 ms 20 Hz
0x01 20 ms 50 Hz
0x02 10 ms 100 Hz
0x03 5 ms 200 Hz
0x04 2 ms 500 Hz
0x05 1 ms 1000 Hz
0x06 500 µs 2000 Hz

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max: 0x06

Example:
In general, set the LOOPTIME to 0x06 (2000 Hz of regulation loop). In rare
cases, when the encoder of the motor is a poor precision one (less than 200
pulses per revolution) and/or motor turns at a slow speed (~200
pulses/second), the Loop Time can be increased. But first try to use the
OPTIONS.2 (Speed x10 interpolation), to have a smoother regulation on the
speed.

Default:
6 (500 us, 2000 Hz)

Active:
Each time the processor is running.

160 / 209

OUTPUT VOLTAGE MAX

Register Address Register Name Function Read/Write Control

0x2E (46) OUTPUTVOLTAGEMAX Limits output PWM Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) Volt

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
This register will modify the scale between the COMMAND reg. and the
PWM output (duty cycle).
If VOLTAGE > OUTPUTVOLTAGEMAX, then the PWM duty cycle is reduced
by the same factor (VOLTAGE / OUTPUTVOLTAGEMAX).
!!! Be careful to avoid heating a motor with a lower maximum voltage rather
than the voltage of the card’s power supply !!! The best solution is to select a
power supply with the same voltage as the motor’s recommended voltage.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFxx = 32’767.996
Min 0x000000xx = 0.0, but it is strongly recommended that

OUTPUTVOLTAGEMAX > VOLTAGE / 2
Step 0x000001xx = 0.004
Disabled 0xFFFFFFFF, with this value, no correction is made

Default:
Disabled 0xFFFFFFFF

Example:
1) Inactive 2) Active
VOLTAGE = 23.5 V VOLTAGE = 46.5 V
OUTPUTVOLTAGEMAX = 24.0 V OUTPUTVOLTAGEMAX = 24.0 V
COMMAND range [-65535 … 65535] COMMAND range [-65535 … 65535]
PWM duty cycle [0 – 100%] PWM duty cycle [0 – 51%]

Information:
To write OUTPUTVOLTAGEMAX = 24.0V, send 0x00180000 = 1572864
(24.0 x 65536)

Active:
Each time the processor is running.

161 / 209

DISSIPATION VOLTAGE

Register Address Register Name Function Read/Write Control

0x2F (47) DISSIPATIONVOLTAGE
Sets dissipation
voltage

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) Volt

(*) Implemented only in FMod-IPECMOT 48/10 T2 and FMod-I2C485ECMOT
DB 48/10

Description:
This register will set the voltage at which the card will start dissipating. When
a motor breaks suddenly, the voltage at the power supply pins can increase
significantly and this can lead to damage of other cards connected in parallel
to the same power supply, or the controller itself. The dissipation
mechanism will avoid this issue, reducing the increase of voltage at the
power supply pins. More information at the chapter “Dissipation” under
“FMod-IPECMOT 48/10 T1 & T2” or “FMod-I2C485ECMOT DB 48/10”.

Limits:
Max 0x00330000 = 51.0
Min 0x000C0000 = 12.0
Step 0x000001xx = 0.004

Default:
0x00330000 = 51.0

Information:
To write DISSIPATIONVOLTAGE = 24.0V, send 0x00180000 = 1572864
(24.0 x 65536)

Active:
Each time the processor is running.

162 / 209

DESIRED

Register Address Register Name Function Read/Write Control

0x30 (48) DESIRED Positive input of PID Read only

Register Size Register Structure Unit

 4 Bytes Signed (2’s complement) Int 32 Pulses/sec

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
The calculated speed consign is copied to DESIRED. This is an input of the
PID regulator; only for PID overview.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Active:
Updated with every regulation refresh, when PID is selected.

163 / 209

FEEDBACK

Register Address Register Name Function Read/Write Control

0x31 (49) FEEDBACK
Negative input of
PID

Read only

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Pulses/sec

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
The actual speed of the motor is copied to the FEEDBACK register. This is
an input of the PID regulator; only for PID overview.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Active:
Updated with every regulation refresh when PID is selected.

164 / 209

COMMAND

Register Address Register Name Function Read/Write Control

0x32 (50) COMMAND Result of PID Read only

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Output of PID and input of PWM driver.

When PID is used:
COMMAND = KP x (DESIRED-FEEDBACK) + KI x INTEGRALDELTA + KD x
DERIVATIONOFDELTA.
This register is optional, and never needed. Only for PID overview.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Active:
Updated with every regulation refresh when PID is selected

165 / 209

KP

Register Address Register Name Function Read/Write Control

0x33 (51) KP PID Proportional gain Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
P-parameter in PID definition.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 32’767.9999847
Min 0x00000000 = 0.0
Step 0x00000001 = 0.000015

Example:
To set KP= 0.1234 ,
write 0x00001F97 = 8087 (0.1234 x 65536 = 8087.1424)

When read 0x12345678 = 305419896 ,
KP = 4660.33776 (305419896/65536)

Default:
KP is between 0.001 and 50.

Active:
Used with every regulation refresh when PID is selected.

166 / 209

K I

Register Address Register Name Function Read/Write Control

0x34 (52) KI PID Integral gain Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
I-parameter in PID definition.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 32’767.9999847
Min 0x00000000 = 0.0
Step 0x00000001 = 0.000015

Example:
To set KI= 0.1234 ,
write 0x00001F97 = 8087 (0.1234 x 65536 = 8087.1424)

When read 0x12345678 = 305419896,
KI = 4660.33776 (305419896/65536)

Default:
KI is between 0.01 and 1.0.

Active:
Used with every regulation refresh when PID is selected.

167 / 209

KD

Register Address Register Name Function Read/Write Control

0x35 (53) KD PID derivative gain Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
D-parameter in PID definition.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 32’767.9999847
Min 0x00000000 = 0.0
Step 0x00000001 = 0.000015

Example:
To set KD= 0.1234 ,
write 0x00001F97 = 8087 (0.1234 x 65536 = 8087.1424)

When read 0x12345678 = 305419896,
KD = 4660.33776 (305419896/65536)

Default:
KD is not used = 0.

Active:
Used with every regulation refresh when PID is selected.

168 / 209

ANTI-RESET WINDUP

Register Address Register Name Function Read/Write Control

0x36 (54) ANTIRESETWINDUP
Integration
saturation

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
During PID loops, the delta (difference between DESIRED-FEEDBACK) is
integrated to INTEGRALDELTA.
If the range of INTEGRALDELTA needs to be limited, ANTIRESETWINDUP will
be the maximum value that INTEGRALDELTA can reach. ANTIRESETWINDUP
is an absolute value.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x00000000 = 0

Default:
0x7FFFFFFF. This value should not be modified.

Active:
Used for every PID calculation, when KI does not equal 0.

169 / 209

INTEGRAL DELTA

Register Address Register Name Function Read/Write Control

0x37 (55) INTEGRALDELTA PID Integral result
Read normally
(Write)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
During PID loops the delta (difference between DESIRED-FEEDBACK) is
integrated in INTEGRALDELTA.
If the range INTEGRALDELTA needs to be limited, ANTIRESETWINDUP will
be the maximum that INTEGRALDELTA can reach.

INTEGRALDELTA is cleared when KI = 0x00000000 (0).
INTEGRALDELTA x KI is added to PID result (COMMAND)

This register is optional, and never needed. Only for PID overview.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Zero 0x00000000 = 0
Min 0x80000000 = -2’147’483’648

Active:
Updated with every regulation refresh when PID is selected.

170 / 209

DERIVATION OF DELTA

Register Address Register Name Function Read/Write Control

0x38 (56) DERIVATIONOFDELTA PID derivative result Read only

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
During PID loops, the delta (difference between DESIRED-FEEDBACK) is
derivated (delta-deltaold) to DERIVATIONOFDELTA reg.

DERIVATIONOFDELTA x KD is added to PID result (COMMAND).
This register is optional, and never needed. Only for PID overview.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Zero 0x00000000 = 0
Min 0x80000000 = -2’147’483’648

Active:
Updated with every regulation refresh when PID is selected.

171 / 209

AUTO-TUNING

Register Address Register Name Function Read/Write Control

0x39 (57) AUTO-TUNING Set PID automatically R/W

Register Size Register Structure Unit

1 Byte
4 bits of function parameters (bits 4-7) + 4 bits function id (bits
0-3)

none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Before starting this feature, the motor should be disconnected from its
mechanical output.
This feature helps the user to automatically find approximate correct values
for PID and trajectory parameters.
When Auto-tuning is accurately completed, the following registers will be
updated: KP, KI, KD, ANTIRESETWINDUP. TOPSPEED, ACCELERATION,
DECELERATION, DEADZONE, LOOPTIME and OPTIONS.

Case of AUTO-TUNING values :

Value Function id Function parameters
0x00 0=Tuning finished ok - (0) PID only
0x10 0=Tuning finished ok - (1) PID + predictive

0x01 1=Starts auto-tuning - (0) PID only
0x11 1=Starts auto-tuning - (1) PID + predictive

0x02 2=Abort auto-tuning - (0)
0x03 3=Running - (0)
0x04 4=Error 0 = tuning aborted
0x14 1= no speed detected (no hall sensor detected)
0x24 2 = no speed detected (hall sensor detected)
0x34 3 = oscillations detected (hall sensor detected)
other values are reserved

Using it:
Write 0x01 (start auto-tuning) and wait (poll the register) until 0x00
(finished correctly) or 0x…4 (error) occurs.
Don’t forget to use the SAVEUSERPARAMETERS (reg 0x03) function to save
all the settings in EEPROM, when the settings are completed.

Active:
When Homing function (find home position) is not running.

172 / 209

SK IP PULSES TIMER

Register Address Register Name Function Read/Write Control

0x40 (58) SKIPPULSESTIMER

False pulses counting
when going out of
stand by mode
correction

Write (Read)

Register Size Register Structure Unit

2 Byte Unsigned int 16 bits milliseconds

(*) Implemented only in FMod-I2CDCMOT SLP 48/1

Description:
In Standby mode the encoder of the motor is powered down. Then when
choosing another motion control mode (e.g. Position control mode), the
encoder is powered-up and, depending on the encoder type, risks to
generate unwanted pulses for a certain period of time. This is the case
particularly for magnetic encoders, which perform an algorithm to find its
actual position when powered-up. SKIPPULSESTIMER register allows the user
to set a time during which the incoming pulses from the encoder are not
counted when powering up the encoder.

To determine the value in milliseconds, the user can test some values (e.g.
1ms, 10ms, 100ms, etc.) until the device does not count any “false” pulses
when going out of Standby mode.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFF = 32’767 milliseconds
Min 0x0000 (not used)

Default:
0x0000

Active:
When going out of Standby mode to another motion control mode.

173 / 209

TRACKPOSITION

Register Address Register Name Function Read/Write Control

0x3B (59) TRACKPOSITION Waypoint movement Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulses or
µPulses

Description:
With TRACKPOSITION, KPPTRACK, TRACKMAXSPD it is possible to
define specific movement, with multiple (position+speed) waypoints.

The bus master (PC) write continuously (typ each 10ms) a new waypoint.
This adds to functionality to synchronize multi-axes systems, when refreshing
waypoints each timeslot on all drivers.

REGULATIONMODE must be set in speed mode, INPUT represents speed
of the waypoint, TRACKPOSITION = position of the same waypoint.

INPUTCopy(realtime) = INPUT + Kpp*(TRACKPOSITION – POSITION)

The position error compensation Kpp*(waypoint position error) is maximize
with [-TRACKMAXSPD;+TRACKMAXSPD].

Limits:
Max 0x3FFFFFFF = 1’073’741’823 (~1Billion)
Min 0xC0000001 = -1’073’741’823 (~ -1Billion)

Example:
With KPPTRACK = 10, actual POSITION 1’000, SPEED 10’000, a new
waypoint of TRACKPOSITION= 1010, INPUT = 1’200 p/s. Position
compensation = 10 * (1010-1000) = 100 p/s are add to INPUT. So new
speed goal is 1’300p/s , from 1’000 p/s increasing with ACCELERATION.

Default:
Copy POSITION to TRACKPOSITION before setting KPPTRACK.

Active:
When REGULATIONMODE is in Speed Control mode.
KppTrack != 0 , tracking position is enable.
(KppTrack = 0 , normal speed trajectory (no error compensation))

174 / 209

KPPTRACK

Register Address Register Name Function Read/Write Control

0x3C (60) KPPTRACK Waypoint movement Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL)
Pulses or
µPulses

Description:
With TRACKPOSITION, KPPTRACK, TRACKMAXSPD it is possible to
define specific movement, with multiple (position+speed) waypoints.

See TRACKPOSITION, for more info.

Limits:
Max 0x7FFFFFFF = 32’767.9999847
Min 0x00000000 = 0.0
Step 0x00000001 = 0.000015

Default:
Not saved in EEPROM, at reboot = 0.

Active:
When REGULATIONMODE is in Speed Control mode.
KppTrack != 0 , tracking position is enable.
KppTrack = 0 to stop trackingposition , back to normal speed trajectory (no
error compensation), eventually set INPUT p/s to 0 to stop movement or
set REGULATIONMODE to position.

175 / 209

TRACKMAXSPD

Register Address Register Name Function Read/Write Control

0x3D (61) TRACKMAXSPD Waypoint movement Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulses/s or
µPulses/s

Description:
With TRACKPOSITION, KPPTRACK, TRACKMAXSPD it is possible to
define specific movement, with multiple (position+speed) waypoints.

See TRACKPOSITION, for more info.

Limits:
Max 0x3FFFFFFF = 1’073’741’823 (~1Billion)
Min 0x00000001 = 1 (p/s)

Default:
Not saved in EEPROM, at reboot = 0.

Active:
When REGULATIONMODE is in Speed Control mode.
KppTrack != 0 when tracking position is enable.

176 / 209

ACCELERATION

Register Address Register Name Function Read/Write Control

0x40 (64) ACCELERATION Speed acceleration Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulses/sec²
or
µPulses/sec2

Description:
When REGULATIONMODE is in Position or Speed Control mode,
ACCELERATION represents the evolution of the DESIRED speed over the
first segment of the trajectory.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x00000000 = 0

Example:
If a motor (that has a null speed) needs to be at 10’000 Pulse/sec in 0.1 sec,
write 0x000186A0 (100’000) to ACCELERATION. The calculation used to
determine the previous value is the desired speed value divided by the time
allowed/needed to perform that operation (10’000/0.1).

Information:
ACCELERATION is always related to encoder1, even in dual encoder mode
with FMod-IPECMOT 48/10 T2.

Default:
If you are unsure, set ACCELERATION = maximum speed of the motor. The
motor will take approximately 1 second to accelerate.

Active:
Used when REGULATIONMODE is in Position or Speed Control mode.

177 / 209

DECELERATION

Register Address Register Name Function Read/Write Control

0x41 (65) DECELERATION Speed deceleration Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulse/sec²
or
µPulses/sec2

Description:
When REGULATIONMODE is in Position Control mode only,
DECELERATION represents the evolution of the DESIRED speed over the
previous segment of the trajectory.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x00000000 = 0

Example:
If a motor is at TOPSPEED of 100’000 Pulse/sec and needs to brake to the
desired INPUT position in 0.2 second, write 0x0007A120 (500’000) to
DECELERATION. The calculation to obtain the previous value is the speed
before braking divided by the time required to perform that operation.
(100’000/0.2).

Information:
DECELERATION is always related to encoder1, even in dual encoder mode
with FMod-IPECMOT 48/10 T2.

Default:
If you are unsure, set DECELERATION = TOPSPEED. The motor will take
approximately 1 second to decelerate.

Active:
Used when REGULATIONMODE is in Position Control mode.

178 / 209

TOP SPEED

Register Address Register Name Function Read/Write Control

0x42 (66) TOPSPEED Maximum speed Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulse/sec
or
µPulses/sec

Description:
When REGULATIONMODE is in Position Control mode only, TOPSPEED
represents the evolution of the constant speed for the middle segment of
the trajectory.
If the output of the motor does not accept high speeds (e.g. gear head, or
inertial energy,…) use a lower TOPSPEED than the maximum one specified in
the motor datasheet. Otherwise write the maximum value according to
your application.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x00000000 = 0

Example:
If a motor is physically limited to 100’000 (µ)Pulses/sec, therefore its output
torque will be close to 0 Nm at this speed.
This is not very useful for an application.
If the TOPSPEED is 50’000 (µ)Pulses/sec, the motor load can change and still
the 3 predefined segments of the trajectory will be followed, never
exceeding TOPSPEED.

Information:
TOPSPEED is always related to encoder1, even in dual encoder mode with
FMod-IPECMOT 48/10 T2.

Default:
0x7FFFFFFF, no speed limitations.

Active:
Used when REGULATIONMODE is in Position Control mode only.

179 / 209

DEAD ZONE

Register Address Register Name Function Read/Write Control

0x43 (67) DEADZONE Cancels speed zone Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Pulse

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
When REGULATIONMODE is in Position Control mode:
After the target position INPUT has been reached (=POSITION), DEADZONE
represents a range of positions where the trajectory regulator forces the
DESIRED speed to 0. This activity lasts from INPUT-DEADZONE to
INPUT+DEADZONE.
With smooth trajectories, no mechanical elasticity and good PID settings
DEADZONE can set down to 1. With a null DEADZONE, if DECELERATION
is too big, overshoots will appear with oscillations. Decrease DECELERATION
or increase DEADZONE value.
Faster regulation refresh rates (LOOPTIME) improve the regulation and
decrease overshoots. Speed x10 interpolation (OPTIONS.2) increases
overshoots.
This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x00000000 = 0

Example:
To know the actual overshoot of a system, set DEADZONE to 1000 pulses.
Set a new position INPUT (e.g. 100’000).
Check the POSITION when movement is completed. E.g. POSITION=100’017
–> overshoot of 17pulses). Write 0x00000011 (17) to DEADZONE.

Default:
0x000000001 (1) when no overshoot of goal position is configured (KP, KI,
KD, DECELERATION).

Active:
Used when REGULATIONMODE is in Position or Speed Control mode only.
When REGULATIONMODE is in Position or Speed Control mode:
If (INPUT-DEADZONE) <= measured value (position or speed) >=
(INPUT+DEADZONE) then WARNING.6 bit (input not reached) is cleared,
otherwise it remains set.

180 / 209

ENCODERS RATIO

Register Address Register Name Function Read/Write Control

0x44 (68) ENCODERSRATIO
Dual encoder
management

Write (Read)

Register Size Register Structure Unit

4 Bytes Unsigned Int 32, 2.2 fixed point notation None

 (*) Implemented only in FMod-IPECMOT 48/10 T2

Description:
It is the value of the 1st encoder divided by the 2nd encoder pulses. It means
that, if an increase of 1000 pulses of the 1st encoder increases the 2nd
encoder of 500 pulses, the ENCODERSRATIO value is equal to 2. The register
is a 4 bytes unsigned int with a 2.2 fixed point notation, therefore a ratio of 2
is written 0x00020000.

Other ratios:
10.25 = 0x000A4000
0.92 = 0x0000EB85
1002.3 = 0x03EA4CCC

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:

Max = 0xFFFFFFFF =̃ 65535.999
Min = 0x00000001

Default:
0x00010000 = 1

Active:
In position control mode and when OPTIONS.10 is set to ‘1’.

181 / 209

LOOPS REST

Register Address Register Name Function Read/Write Control

0x46 (70) LOOPSREST
Loops management
(re)initialization

Write (Read)

Register Size Register Structure Unit

2 Bytes Signed (2’s complement) Int 16 µPulse

(*) Implemented only in stepper motor controllers

Description:
This is the rest of the movement that is automatically calculated by the
Loops management mode. The user can set this value to ‘0’ when a
(re)initialization of the Loops mode wants to be made. This feature is useful
only when the stepper motor controller is configured in “Position and
phases synchronisation” mode (OPTIONS.19 set to ‘1’).

E.g. Some loops commands were sent to the controller and the user wants
to start over the loops management system. If the LOOPSREST is not set to
‘0’, the rest of the movement will remain the same as in the last Loops
management, which would lead to a misalignment.

If OPTIONS.19 = 0
LOOPSREST is unchanged

If OPTIONS.19 = 1 and OPTIONS.20 = 1 (sync. on 1 full-step)
LOOPSREST range is [-253;253] (±1 full-step)

If OPTIONS.19 = 1 and OPTIONS.20 = 0 (sync. on 4 full-steps)
LOOPSREST range is [-1023;1023] (±4 full-steps)

Limits:
Max 0x7FFF = 32‘767
Min 0x8000 = -32‘768

Default:
0x0000 = 0

Active:
When using the Loops mode management.

182 / 209

HOMING START INPUT

Register Address Register Name Function Read/Write Control

0x47 (71) HOMINGSTARTINPUT
Homing with
stepper motor

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 µPulse

(*) Implemented only in stepper motor controllers

Description:
This is the movement in [µPulses] that the motor will move while
performing its Homing. Since it is a signed int variable, the direction of the
movement is given with the sign of the register. Refer to homing methods
12-13 under the chapter “Homing (position reference)” to have more
information on the usage of this register.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
0x0000002710 = 10’000

Active:
Only during Homing.

183 / 209

HOMING OPTIONS

Register Address Register Name Function Read/Write Control

0x48 (72) HOMINGOPTIONS Bit to bit settings Write (Read)

Register Size Register Structure Unit

4 Bytes Unsigned Int 32 bits , each bit independent none

Description:
The homing needs to attain a specific condition (chosen among Homing
methods) in order to set the HOMINGPOSITION home reference. It is only
meaningful in Position Control mode. This register defines the Homing
method and different parameters used during Homing. See Table 1 below to
know to which controllers each homing method applies.
This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Bits When set
HomingOptions.0-3 Defines the Homing method (See the “Homing

method table” below).

HomingOptions.4-6 Unused

HomingOptions.7 Auto-homing at power-up (internally calling the
HOMING function).

HomingOptions.8-11 Defines the ratio that will be multiplied with the
CURRENTMAX reg during HOMING (see the
“Ratio table” below).

HomingOptions.12-15 Defines the ratio that will be multiplied with the
TOPSPEED reg during Homing (see the “Ratio
table” below).

HomingOptions.16-19 Defines the ratio that will be multiplied with the
ACCELERATION reg during Homing (see the “Ratio
table” below).

HomingOptions.20-23 Defines the output-saturated-time, in percent of 1
second (see the “Ratio table” below), in the
Homing methods configured for current detection
and limitation (Unused for stepper motor
controllers).

HomingOptions.24-31 Unused.

184 / 209

Homing method table

4 bits Homing method

F
M

o
d
-I

P
E
C

M
O

T

T

1
/T

2

F
M

o
d
-I

2
C

4
8
5
E
C

M
O

T
 D

B

F
M

o
d
-I

2
C

D
C

M
O

T
 D

B
/S

L
P

F
M

o
d
-I

2
C

ST
E
P
M

O
T

 S
L
P

0x0 Already home – don’t change X X X

0x1 Already home and set INPUT X X X

0x2 Negative move to the first index X

0x3 Positive move to the first index X

0x4 Max current detection with negative move X X

0x5 Max current detection with positive move X X

0x6
Max current detection with negative move
and index

X X

0x7
Max current detection with positive move
and index

X

0x8 Negative move to the limit 1 switch X X

0x9 Positive move to the limit 1 switch X X

0xA
Negative move to the limit 1 switch and
index

X

0xB Positive move to the limit 1 switch and index X

0xC Move of start input X

0xD Move of start input to the limit 1 switch X

0xE Unused

0xF Unused

Ratio table
4 bits Corresponding ratio

0x0 2.3%

0x1 3.1%

0x2 4.7%

0x3 6.3%

0x4 9.4%

0x5 12.5%

0x6 18.8%

0x7 25%

0x8 37.5%

0x9 50%

0xA 75%

0xB 100%

0xC 150%

0xD 200%

0xE 300%

0xF 400%

185 / 209

Default value of the 4 bytes: [bits 31 -> 0]
0x00’BB’BB’00 equivalent to b0000’0000’1011’1011’1011’1011’0000’0000

Which represents :

o Homing method : Already home – don’t change
o No homing at power-up
o Current max ratio : 100%
o Top Speed ratio : 100%
o Acceleration ratio : 100%
o Output saturated time : 1 sec

(*) For stepper motor controllers, output saturated time value is not taken into
account.

Active:
If HomingOptions.7 bit is set upon power up, or every time the HOMING
(0x49) function is called.

186 / 209

HOMING

Function Address Function Name Function Read/Write Control

0x49 (73) HOMING Starts to find home Write only

Register Size Register Structure Unit

0 Bytes none none

Description:
When this function is called, it starts to find a home defined by the method
described in the HOMINGOPTIONS register.

When this function is called:
REGULATIONMODE is internally changed to “position control mode”.
WARNING.10 and WARNING.11 bits (homing, no home found) are set to 1.
INPUT is locked and does not accept external commands during Homing.

This function can be started automatically after power-up if the
HOMINGOPTIONS.7 bit is set.

Active:
Each time the processor is running.

187 / 209

STOP HOMING

Function Address Function Name Function Read/Write Control

0x4A (74) STOPHOMING
Stops a homing
sequence

Write only

Register Size Register Structure Unit

0 Bytes none none

Description:
A call of this function stops the Homing sequence (if running). At the end of
this function, the CURRENTMAX, ACCELERATION and TOPSPEED will be
internally reloaded with their previously saved values. INPUT is cleared,
REGULATIONMODE is set to Brake mode or Driver Open mode for stepper
motor controllers. WARNING.11 bit (Homing) is cleared.

There are three possibilities to stop the Homing:

1) When the home is found (REGULATIONMODE is set to position

control).
2) When STOPHOMING is called (REGULATIONMODE is set to Brake mode

or Driver Open mode for stepper motor controllers).
3) Power-down the whole card.

Active:
When Homing sequence is running, otherwise it has no effect.

188 / 209

HOMING POSITION

Register Address Register Name Function Read/Write Control

0x4B (75) HOMINGPOSITION
Sets the Home
reference value

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulse or
µPulse

Description:
Write values to this register to set a new reference position once Homing is
finished. The reference position is obviously valid only in position control
mode.

If HOMINGOPTIONS (0x48) is rightly configured and the HOMING function is
running, HOMINGPOSITION is copied to the POSITION register when the
Homing conditions are reached. WARNING.10 bit (no home) is cleared since
a (new) home have been found.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
 0x00000000 = 0

Active:
After HOMING function is called, when HOMINGOPTIONS conditions are
reached.

189 / 209

HOMING INPUT

Register Address Register Name Function Read/Write Control

0x4C (76) HOMINGINPUT
Sets a new goal
when home is found

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32
Pulse or
µPulse

Description:
Write a value to this register to set a new INPUT when Homing is finished.
Only for position control mode.

If HOMINGOPTIONS (0x48) is rightly configured and the HOMING function is
running. When the Homing conditions are reached, HOMININPUT is copied
into the INPUT register. WARNING.11 bit (Homing) is cleared when the
Homing is completed.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 2’147’483’647
Min 0x80000000 = -2’147’483’648

Default:
 0x00000000 = 0

Active:
After the HOMING function is called, when HOMINGOPTIONS conditions
are reached.

190 / 209

ENHANCED INPUTS

Register Address Register Name Function Read/Write Control

0x4D (77) ENHANCEDINPUTS
Inputs for Loops
mode

Write (Read)

Register Size Register Structure Unit

6 Bytes
Unsigned Int 32 bits + Signed (2’s complement) Int 8 bits + 8
bits independant

Variable

Description:
Write a value to this register to set a new Loops command. For more
information refer to the chapter “Loops management”.

ENHANCEDINPUTS.[0-31] 4 bytes Loops input if Loops input is in

pulses (ENHANCEDINPUTS.44 = 0).

ENHANCEDINPUTS.[0-23] 3 bytes Loops input if Loops input is in

percent (ENHANCEDINPUTS.44 = 1). In
that case ENHANCEDINPUTS.[24-31] are
unused. E.g. Write 0x00800000 to have
50% of one full turn.

ENHANCEDINPUTS.[32-39] 1 byte Loops counter signed int.

ENHANCEDINPUTS.43 Peak current enable when set to ‘1’.

ENHANCEDINPUTS.44 Specifies if Loops input is in pulses or in

percent of one full turn; when set to ‘1’,
Loops input is in percent.

ENHANCEDINPUTS.45 Error, Loops counter

(ENHANCEDINPUTS.[32-39]) outside its
range.

ENHANCEDINPUTS.47 Execute the new Loops command and

force position control mode in
REGULATIONMODE (0x20).

ENHANCEDINPUTS.[40,41,42,46] are reserved.

191 / 209

Limits:
Loops Input in pulses (ENHANCEDINPUTS.[0-31])
Max 0xFFFFFFFF = 4’294’967’295 pulses
Min 0x00000000 = 0

Loops Input in percent (ENHANCEDINPUTS.[0-31])

Max 0x xxFFFFFF = 16‘777‘215 =̃ 99.999%
Min 0x xx000000 = 0

Loops counter (ENHANCEDINPUTS.[32-39])
Max 0x6F = 111
Min 0x9D = -99
Default:
0x000000000000

Active:
Each time the processor is running.

192 / 209

LOOPS CONFIG

Register Address Register Name Function Read/Write Control

0x4E (78) LOOPSCONFIG
Configuration for
Loops mode

Write (Read)

Register Size Register Structure Unit

12 Bytes
Unsigned Int 32 bits + Unsigned Int 32 bits + Unsigned Int 32
bits

Pulse or
µPulse

Description:
Three parameters have to be defined for the configuration of the Loops
mode: the number of pulses per turn, the numerator and the denominator
of the fractional pulse left. The numerator must always be smaller than the
denominator.
For more information refer to the chapter “Loops management”.

LOOPSCONFIG.[0-31] Integer value of pulses per turn.

LOOPSCONFIG.[32-63] Numerator of the fractional part.

LOOPSCONFIG.[64-95] Denominator of the fractional part.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Example:
The application is a rotary table connected directly to the motor device
through a gearhead. The gearhead reduction is given approximately to 14:1,
the exact ratio is 676/49 (manufacturer data). The motor has 4’096 pulses
per revolution, which gives 56’508 + 4/49 pulses per revolution of the table.

Therefore the values in LOOPSCONFIG are the following:
LOOPSCONFIG = 0x00 00 00 31 00 00 00 04 00 00 DC BC
 12 Bytes Denominator Numerator Pulses/turn
 = 49 = 4 = 56’508

Limits:
LOOPSCONFIG.[0-31], LOOPSCONFIG.[32-63] and LOOPSCONFIG.[64-95]
Max 0xFFFFFFFF = 4’294’967’295
Min 0x00000000 = 0

Default:
0x000000000000000000000000

Active:
When executing a Loops mode command.

193 / 209

ENHANCED PARAMETERS

Register Address Register Name Function Read/Write Control

0x4F (79) ENHANCEDPARAMS
Parameters for
Loops mode

Write (Read)

Register Size Register Structure Unit

8 Bytes Reserved 32 bits + Unsigned Int 16 bits + Unsigned Int 16 bits Variable

Description:
Every time a new Loops command is sent and the peak current
management is enabled (ENHANCEDINPUTS.43 = 1), the maximum current
in the motor is set to the peak current specified in ENHANCEDPARAMS.[0-
15] and for the duration in ENHANCEDPARAMS.[16-31]. After this lapse of
time, the maximum current is set back the current specified in the register
CURRENTMAX (0x2A).
For more information refer to the chapter “Loops management”.

ENHANCEDPARAMS.[0-15] Peak current in unsigned int 1.1 fixed point

notation (E.g. 2.75 A = 0x02C0)

ENHANCEDPARAMS.[16-31] Peak current duration in milliseconds. For

2 seconds = 2’000 ms, write 0x07D0.

ENHANCEDPARAMS.[32-63] Reserved

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
ENHANCEDPARAMS.[0-15]
Same limits defined in CURRENTMAX (0x2A) register, looking only at the 2
middle bytes.

ENHANCEDPARAMS.[16-31]
Max 0xFFFF = 65535
Min 0x0000 = 0

Default:
0x0000000000000000

Active:
When executing a Loops mode command and when ENHANCEDINPUTS.43
= 1 (peak current enabled).

194 / 209

LIMIT 1 (Home) SETUP

Register Address Register Name Function Read/Write Control

0x50 (80) LIMIT1SETUP Configures limit n° 1 Write (Read)

Register Size Register Structure Unit

 4 Bytes Unsigned Int 32 bits , each bit independent none

Bits description:
This register configures the event depending on the “Limit 1s” input pin.
(Refer to the chapter “12. Limit switches” for more information)
This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.
When set to 1:
Bit number Bit name Bit description
LIMIT1SETUP .0 bLimit1Enable Activates Limit number1 detection
LIMIT1SETUP .1 bLimit1ActivHigh When clear, the active setting is low
LIMIT1SETUP .2 bLimit1RegulationMode Copy LIMIT1REGULATIONMODE to

REGULATIONMODE
LIMIT1SETUP .3 bLimit1Position Copy LIMIT1POSITION to POSITION (once)
LIMIT1SETUP .4 bLimit1Index Not used (0), future functionality
LIMIT1SETUP .5 bLimit1xInputL Defines where LIMIT1XINPUT must be

copied to
LIMIT1SETUP .6 bLimit1xInputH With previous bit
LIMIT1SETUP .5-31 none Not used (0)

bLimit1xInputH , bLimit1xInputL action:
0 0 LIMIT1xINPUT unused
0 1 LIMIT1xINPUT copied to INPUT (each regulation loop)
1 0 LIMIT1xINPUT copied to INPUTOFFSET (once)
1 1 LIMIT1xINPUT copied to INPUTOFFSETMEASURED (each regulation loop)

Example:
With a PNP proximity detector (mechanical, optical, magnetic …), a pull-
down resistor (on the limit input pin) can be selected with the OPTIONS.5
bit. If the detector is active high, set LIMIT1SETUP.1 bit.
If the detector is located at the reference position, set LIMIT1SETUP.3 bit and
write the reference value to the LIMIT1POSITION register. Activate
LIMIT1SETUP.0 bit to enable the activity of the Limit 1.

To configure a limit, first deactivate it and then select pull-up or pull-down
resistors, write only necessary registers between LIMIT1XINPUT,
LIMIT1POSITION, LIMIT1REGULATIONMODE. Once this has been done, write
LIMIT1SETUP with enable bit set.
Default:
0x00000000 (deactivated)
Active:
When Homing is not running.

195 / 209

LIMIT 1 SET REGULATION MODE

Register Address Register Name Function
Read/Write
Control

0x51 (81) LIMIT1REGULATIONMODE
Limit 1 regulation
mode

Write (Read)

Register Size Register Structure Unit

1 Byte Unsigned Int 8 bits none

Description:
When “Limit 1” has been reached, and if LIMIT1SETUP.0 is set (enabled) and
LIMIT1SETUP.2 is set as well (new regulation mode), then
LIMIT1REGULATIONMODE will be copied to REGULATIONMODE.

See REGULATIONMODE (0x20) for further details.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Active:
When Limit1 is reached.

196 / 209

LIMIT 1 SET POSITION

Register Address Register Name Function Read/Write Control

0x52 (82) LIMIT1POSITION Sets a new position Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Pulse

Description:
When Limit1 is reached, if LIMIT1SETUP.0 is set (enable) and LIMIT1SETUP.3
is set (new position), then LIMIT1POSITION will be copied to POSITION.

See POSITION (0x26) for further details.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Active:
When Limit1 is reached.

197 / 209

LIMIT 1 SET X- INPUT

Register Address Register Name Function Read/Write Control

0x53 (83) LIMIT1XINPUT Sets a new input Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Variable

Description:
When Limit1 is reached, if LIMIT1SETUP.0 is set (enable) and LIMIT1SETUP.5-
6 is not 00, then LIMIT1XINPUT will be copied to INPUT or INPUTOFFSET or
INPUTOFFSETMEASURED.

See LIMIT1SETUP (0x50) for destination description.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Active:
When Limit1 is reached.

198 / 209

I/O Config

Register Address Register Name Function Read/Write Control

0x55 (85) IOCFG A/D measurements Write (Read)

Register Size Register Structure Unit

2 Bytes 4 x 4bits (nible) None

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
IOCFG.0-3 (4bits) defines the configuration (16 states) of I/O 1
IOCFG.4-7 (4bits) defines the configuration (16 states) of I/O 2
IOCFG.8-15 are reserved.

All 16 states:
0x0 pin as input only (0-5V)
0x1 pin as ouput at 5V (* max 2mA)
0x2 * pin as output at 0V
0x3 * hardware error “live”, desapears when error desapears

-undervoltage
-overvoltage
-overtemperature
-impossible hall signal 000 or 111
-mosfet driver error

0x4 * hardware error “hold”
Same as 0x3 but a detected error is hold until next reboot or
IOCfg change to “live” 0x3 and wait for no error, when the
error disappears back to mode 0x4 is possible.

0x5 * Phases short circuit relay or motor brake
When driver is off or not enough powered an external relay can
short circuit the motor power lines (with or without brake shunt
resistors),

0x6* Phases short circuit by internal MOSFET transistors, indicates that
the driver actually short-circuit all motor power lines to 0V (e.g.
after 2 seconds of REGULATIONMODE = 0 = STOP. If this
signal is used to add an additional brake, take care to be able to
release brake in about 1ms (max 10ms). If this 1ms is impossible,
prefer to use mode 0x5.

0x7* Indicates that DEADZONE value is reached (in positioning or
speed REGULATIOMODE)

0x8-0xF reserved

Active:
IOCfg checked each looptime. IOs output updates each looptime.

199 / 209

I/O STATE

Register Address Register Name Function Read/Write Control

0x56 (86) IOSTATE A/D measurements Read only

Register Size Register Structure Unit

4 Bytes Unsigned Int 32 bits None

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1
Only I/O 1 exists in FMod-IPECMOT 48/10 T1

Description:
I/O 1 and 2 can be used in input to measure a voltage. The voltage range is
[0-5V]. Even when the IOs are in output the A/D continue to work.

I/OSTATE.[0-7] is the A/D measurement of I/O 1 and I/OSTATE.[8-15] is the
A/D measurement of I/O2.

The values are given in a ratio of the Logic supply voltage, 0xFF = 255 is the

maximum value (=̃5V), 0x80 = 128 =̃ 2.51V, 0x00 = 0 is the minimum one
(0V). The equation is Voltage IO1 [V] = I/OSTATE.[0-7]/255 * 5 and Voltage
IO2 [V] = I/OSTATE.[8-15]/255 * 5.

I/OSTATE.[16-31] are reserved.

Limits:

Max 0xFF = 255 =̃ 5V
Min 0x00 = 0 = 0V

Active:
Each time the processor is running. Each IO A/D Values is updated in ~5ms.

200 / 209

LIMIT 2 SETUP

Register Address Register Name Function Read/Write Control

0x58 (88) LIMIT2SETUP Configures limit n° 2 Write (Read)

Register Size Register Structure Unit

 4 Bytes Unsigned Int 32 bits , each bit independent none

Bits description:
LIMIT2SETUP is the same register as LIMIT1SETUP but for Limit n° 2.
See LIMIT1SETUP (0x50) for more information.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

201 / 209

LIMIT 2 SET REGULATION MODE

Register Address Register Name Function
Read/Write
Control

0x59 (89) LIMIT2REGULATIONMODE
Limit 2 regulation
mode

Write (Read)

Register Size Register Structure Unit

1 Byte Unsigned Int 8 bits none

Description:
LIMIT2REGULATIONMODE is the same register as LIMIT1REGULATIONMODE
but for Limit n° 2.
See LIMIT1REGULATIONMODE (0x51) for more information.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

202 / 209

LIMIT 2 SET POSITION

Register Address Register Name Function Read/Write Control

0x5A (90) LIMIT2POSITION Sets a new position Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Pulse

Description:
LIMIT2POSITION is the same register as LIMIT1POSITION but for Limit n° 2.
See LIMIT1POSITION (0x52) for more information.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

203 / 209

LIMIT 2 SET X- INPUT

Register Address Register Name Function Read/Write Control

0x5B (91) LIMIT2XINPUT Sets a new input Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 Variable

Description:
LIMIT2XINPUT is the same register as LIMIT1XINPUT but for Limit n° 2.
See LIMIT1XINPUT (0x53) for more information.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

204 / 209

DISSIPATION TEMPERATURE

Register Address Register Name Function Read/Write Control

0x60 (96) DISSIPTEMPERATURE
Estimated
temperature of the
dissipation transistors

Read only

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL) C°

(*) Implemented only in FMod-IPECMOT 48/10 T2

Description:
This register informs the user of the temperature of the dissipation
transistors.
When DISSIPTEMPERATURE < 170°, the dissipation of the breaking energy
can be enabled by the controller.
When DISSIPTEMPERATURE > 170°, the dissipation of the breaking energy is
disabled to prevent damaging the controller.

For more information, refer to the chapter “Dissipation” (p.18).

Limits:
Max 0x00AB0000 = 171°C
Min 0xFFD80000 = -40.0 °C

Active:
Each time the processor is running

205 / 209

VFF OFFSET

Register Address Register Name Function Read/Write Control

0x61 (97) VFFOFFSET Feed forward offset Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s complement) Int 32 none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Offset value added to the command in feed forward regulation.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x0000FFFF = 65’535
Min 0xFFFF0000 = -65‘536

Default:
VFFOFFSET = -1000.

Active:
Used with every regulation refresh when feed forward is selected.

206 / 209

KVFF

Register Address Register Name Function Read/Write Control

0x62 (98) KVFF
Velocity feed forward
gain

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 16 (HH-HL) + 16 bits fixed point (LH-LL) none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Velocity contribution of the feed forward regulation.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 32’767.9999847
Min 0x00000000 = 0.0
Step 0x00000001 = 0.000015

Example:
To set KVFF = 0.1234,
write 0x00001F97 = 8087 (0.1234 x 65536 = 8087.1424)

When read 0x12345678 = 305419896,
KVFF = 4660.33776 (305419896/65536)

Active:
Used with every regulation refresh when feed forward is selected.

207 / 209

KAFF

Register Address Register Name Function Read/Write Control

0x63 (99) KAFF
Acceleration feed
forward gain

Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 8 (HH) + 24 bits fixed point (HL-LH-LL) none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Acceleration contribution of the feed forward regulation.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 127.99999994
Min 0x00000000 = 0.0
Step 0x00000001 = 0.00000006

Example:
To set KAFF= 0.1234,
write 0x001F9724 = 2070308 (0.1234 x 16777216 = 2070308.454)

When read 0x12345678 = 305419896,
KAFF = 18.20444 (305419896/16777216)

Active:
Used with every regulation refresh when feed forward is selected.

208 / 209

KDFF

Register Address Register Name Function Read/Write Control

0x64 (100) KDFF Deceleration Write (Read)

Register Size Register Structure Unit

4 Bytes Signed (2’s cplt) Int 8 (HH-HL) + 24 bits fixed point (LH-LL) none

(*) Not implemented in FMod-I2CSTEPMOT SLP 35/1 & 35/0.1

Description:
Decceleration contribution of the feed forwards regulation.

This register is saved when calling the function SAVEUSERPARAMETERS or
SAVEFACTORYPARAMETERS.

Limits:
Max 0x7FFFFFFF = 127.99999994
Min 0x00000000 = 0.0
Step 0x00000001 = 0.00000006

Example:
To set KDFF= 0.1234,
write 0x001F9724 = 2070308 (0.1234 x 16777216 = 2070308.454)

When read 0x12345678 = 305419896,
KDFF = 18.20444 (305419896/16777216)

Active:
Used with every regulation refresh when feed forward is selected.

209 / 209

Contact address:

FiveCo - Innovative Engineering
En Budron H11
CH-1052 Le Mont-sur-Lausanne
Switzerland
Tel: +41 21 632 60 10
Fax: +41 21 632 60 11

www.fiveco.com
info@fiveco.com

http://www.fiveco.com/
mailto:info@fiveco.com

	1. FiveCo’s motor controllers product line
	2. FMod-IPECMOT 48/10 T1 & T2
	Operating conditions
	FMod-IPECMOT 48/10 T2
	FMod-IPECMOT 48/10 T1

	Overview
	Applications
	Type 2 updates
	Software operating principle
	Hardware description of FMod-IPECMOT 48/10 T2
	Connector J3 and J4 pinning

	Hardware description of FMod-IPECMOT 48/10 T1
	Connector J3 pinning

	Quick start for FMod-IPECMOT 48/10 T1 & T2
	Plug and Play
	Change IP address

	Hardware
	Power supply
	Dissipation
	Motor type
	Brushed motor (DC)
	Brushed motor (DC) with encoder
	Brushless motor (EC)
	Brushless motor (EC) with encoder
	How to connect hall sensors
	Dual encoder management
	Enable pin
	Limit Switch: stop, reference, stopper type
	Inputs and outputs
	LED state

	Java Applet
	Overview
	State panel
	Main parameters panel

	3. FMod-I2C485ECMOT DB 48/10
	Operating conditions
	Overview
	Applications
	Hardware description
	Physical Dimensions [mm]
	Connector J1 pinning
	Connector J2 pinning

	Hardware
	Power supply
	Dissipation
	Motor type
	Brushed motor (DC)
	Brushed motor (DC) with encoder
	Brushless motor (EC)
	Brushless motor (EC) with encoder
	How to connect hall sensors
	Enable pin
	Limit Switch: stop, reference, stopper type
	I2C/RS485 address selection and I/Os

	4. FMod-I2CDCMOT DB 48/1.5 & SLP 48/1
	Operating conditions
	FMod-I2CDCMOT DB 48/1.5
	FMod-I2CDCMOT SLP 48/1

	Overview
	Applications
	Hardware description of FMod-I2CDCMOT DB 48/1.5
	Physical Dimensions [mm]
	Connector J1 pinning

	Hardware description of FMod-I2CDCMOT SLP 48/1
	Physical Dimensions [mm]
	Footprint
	Connector J2 pinning

	Hardware
	Power supply
	Motor type
	Brushed motor (DC)
	Brushed motor (DC) with encoder
	Limit-Switch: stop, reference, stopper type
	I2C address selection and I/Os

	5. FMod-I2CSTEPMOT SLP 35/1 & 35/0.1
	Operating conditions
	FMod-I2CSTEPMOT SLP 35/1
	FMod-I2CSTEPMOT SLP 35/0.1

	Overview
	Applications
	Hardware description of FMod-I2CSTEPMOT SLP 35/1 & 35/0.1
	Physical Dimensions [mm]
	Footprint
	Connector J2 pinning

	Hardware
	Power supply
	Motor type
	Limit-Switch: stop, reference, stopper type
	I2C address selection

	Position and phases synchronisation
	Overview
	4 full-steps synchronisation
	Consequence on modifying POSITION

	6. Ethernet Interface
	General
	TCP-HTTP port (TCP # 80)
	Control ports (TCP # 8010) & (UDP #7010)
	READ register value command(s).
	WRITE register value command(s).

	Easy IP address config (UDP # 7010)
	Checksum calculation

	7. I2C Interface
	Description
	Protocol
	Sequence
	Bus Idle State
	Start Bit and Stop Bit
	I2C address selection
	Slave AddressWrite/Read
	Data Bit Transfer
	Acknowledge and No-Acknowledge Bit

	Write Sequence (1 byte and 4 bytes)
	Read Sequence (1 byte and 4 bytes)

	8. RS485 Interface
	Physical layer – RS485
	Registers Access Protocol
	Question & Answer oriented
	Packet structure
	Header
	DATA

	No answer
	Packet example
	Checksum calculation example

	9. Configuration software : FSoft-MotorCtrl
	Overview
	1. Tab menu
	2. Parameters
	3. Regulation mode
	4. Trajectory values
	5. Input
	6. Graphical visualization
	7. Save parameters
	8. Status bar

	10. Motion Control modes
	General parameters
	Motor regulation parameters
	Feed forward
	VFFOFFSET (0x61)
	KVFF (0x62)
	KAFF (0X63)
	KDFF (0x64)

	PID controller

	List of regulation modes
	Brake mode
	Driver Open mode
	Open Loop mode
	Wait mode
	Speed Control mode
	How to choose the correct PID parameters in Speed Control mode?

	Position Control mode
	How to choose the correct PID parameters in Position Control mode

	Standby mode

	11. Auto-tuning
	What does auto-tuning consist of?
	Why do I need to mechanically disconnect the motor for auto-tuning?

	12. Limit switches
	13. Homing (position reference)
	List of Homing methods
	Homing method 0: Actual position is correct, don’t alter
	Homing method 1: Actual position is correct, set new INPUT
	Homing method 2: Move backward (-) to the first index
	Homing method 3: Move forward (+) to the first index
	Homing method 4: Move backward (-) to the mechanical limit
	Homing method 5: Move forward (+) to the mechanical limit
	Homing method 6: Move backward (-) to a mechanical limit and index
	Homing method 7: Move forward (+) to a mechanical limit and index
	Homing method 8: Move backward (-) to limit switch 1
	Homing method 9: Move forward (+) to Limit Switch 1
	Homing method 10: Move backward (-) to Limit Switch I and index
	Homing method 11: Move forward (+) to Limit Switch 1 and index
	Homing method 12: Move of Start Input
	Homing method 13: Move of Start Input to the Limit Switch 1

	14. Loops management
	Overview
	Loops configuration
	Loops mode
	Loops
	Shortest Way
	1st positive position
	1st negative position
	Same direction, if speed = 0 then shortest way
	Same direction, if speed = 0 then 1st positive position
	Same direction, if speed = 0 then 1st negative position
	Brake and at speed = 0 set actual position in input
	Take offset input
	Take offset measured input
	Infinite positive loops with speed defined by input
	Infinite negative loops with speed defined by input

	Loops Options and Status
	Peak current management
	Using Loops mode example

	15. Register management
	Memory organization
	Full description of registers
	List of registers
	TYPE
	VERSION
	RESET CPU
	SAVE USER PARAMETERS
	RESTORE USER PARAMETERS
	RESTORE FACTORY PARAMETERS
	SAVE FACTORY PARAMETERS
	VOLTAGE
	WARNING
	NB POWER UP
	TIME IN SERVICE
	STANDBY TIMER
	COM OPTIONS
	ETHERNET MAC
	IP ADDRESS / I2C ADDRESS
	SUBNET MASK
	TCP TIMEOUT
	DEVICE NAME
	TCP CONNECTIONS OPENED
	REGULATION MODE
	INPUT
	INPUT OFFSET
	INPUT OFFSET MEASURED
	INPUT MIN
	INPUT MAX
	POSITION
	POSITION OFFSET
	SPEED
	TEMPERATURE
	CURRENT MAX
	CURRENT SENSE
	OPTIONS
	LOOPTIME
	OUTPUT VOLTAGE MAX
	DISSIPATION VOLTAGE
	DESIRED
	FEEDBACK
	COMMAND
	KP
	KI
	KD
	ANTI-RESET WINDUP
	INTEGRAL DELTA
	DERIVATION OF DELTA
	AUTO-TUNING
	SKIP PULSES TIMER
	TRACKPOSITION
	KPPTRACK
	TRACKMAXSPD
	ACCELERATION
	DECELERATION
	TOP SPEED
	DEAD ZONE
	ENCODERS RATIO
	LOOPS REST
	HOMING START INPUT
	HOMING OPTIONS
	HOMING
	STOP HOMING
	HOMING POSITION
	HOMING INPUT
	ENHANCED INPUTS
	LOOPS CONFIG
	ENHANCED PARAMETERS
	LIMIT 1 (Home) SETUP
	LIMIT 1 SET REGULATION MODE
	LIMIT 1 SET POSITION
	LIMIT 1 SET X- INPUT
	I/O Config
	I/O STATE
	LIMIT 2 SETUP
	LIMIT 2 SET REGULATION MODE
	LIMIT 2 SET POSITION
	LIMIT 2 SET X- INPUT
	DISSIPATION TEMPERATURE
	VFF OFFSET
	KVFF
	KAFF
	KDFF

