

Version: **1.5** Last revision: **October 16, 2019** Printed in **Switzerland**

© Copyright 2002-2019 FiveCo Sàrl. All rights reserved. The contents of this manual may be modified by FiveCo without any warning.

<u>Trademarks</u>

Windows® is a registered trademark of Microsoft Corporation. Ethernet® is a registered trademark of Xerox Corporation. Java® is a registered trademark of Sun Microsystem. Philips® is a registered trademark of Koninklijke Philips Electronics N.V. Borland® is a registered trademark of Borland Software Corporation.

Warning

This device is not intended to be used in medical, life-support or space products.

Any failure of this device that may cause serious consequences should be prevented by implementation of backup systems. The user agrees that protection against consequences resulting from device system failure is the user's responsibility. Changes or modifications to this device not explicitly approved by FiveCo will void the user's authority to operate this device.

Support

Web page: <u>https://www.fiveco.ch/product-fmod-ipaxesctrl.html</u> e-mail: <u>support@fiveco.ch</u>

<u>Revisi</u>	on history					
Revision	Date	Author	Note	Firmware version	Applet version	Application version
1.0	16.11.04	XG	- First revision history	Since 1.8	1.3	-
1.1	21.04.05	XG	 Add IP SUBNETMASK register (0x13) Add TCPCONNECTIONSOPENED register (0x1A) Easy change IP with broadcast Add relative coordinate with relative zero Add AXISxPOSITIONOFFSET registers (relative offset) 	Since 1.11	1.6	-
1.2	30.09.05	AG	- Text and layout correction - Add checksum function example	Same	Same	-
1.3	27.01.06	AG	- Correct function ID for easy change IP answer frame.	Same	Same	-
1.4	21.12.07	AG	- New address	Same	Same	-
1.5	16.10.19	AG	- Remove Java Applet and add new application.	Same	Same	1.0

Table of Contents

 Package and operating conditions Package contents Operating conditions 	5
2. Overview Connection architecture (Ethernet) Board Layout	
3. Quick start Power and network Changing IP address	
4. Hardware Power supply LCD Display Keyboard Trackball LEDs SOS button	2
5. TCP/UDP Server General TCP-HTTP port (# 80) TCP & UDP Control port (# 8010) Easy IP address config (UDP # 7010) Checksum calculation	7 7 7 7 8 8 20 21
6. Java Applet Overview Main Panel Board's communication settings Panel Keyboard settings panel LCD text Panel Modes & Axes settings Panel	Erreur ! Signet non défini. 23 24 27 26 24 27 26 24 25
7. Reference zero absolute/relative	
8. Registers management	
Memory Organization Full Register Description	

I. Package and operating conditions

Package contents

- I Axes Ethernet Control board : FMod-IPAXESCTRL
- This manual
- (optional) Power Supply : Power over Ethernet IEEE802.3af Hub-injector (110-240 VAC, 50/60Hz -> +48v, 350 mA)

Operating conditions

- Operating temperature
 -20 70 °C
- Supply voltage Vcc
- 7-48 VDC
- Input capacity (Power +,-) ~220uF, ~50mOhm ESR
- Power consumption (~0.8W)
 65mA when idle @ Vcc 7 V
 Without LCD & Trackball
 25mA when idle @ Vcc 24 V
 15mA when idle @ Vcc 48 V
- Power consumption (~1.2W)
 I 50mA when idle @ Vcc 7 V
 With LCD & Trackball45mA when idle @ Vcc 24 V
 25mA when idle @ Vcc 48 V

2. Overview

The FMod-AXESCTRL is a board used to control a maximum of 3 DCmotorized axes (card FMod-IPDCMOT or FMod-IPECMOT). The main advantage of this card is its communication protocol (Ethernet: TCP/IP-HTTP) which allows it to be connected to a standard Ethernet network. In addition, the board follows the IEEE 802.3af standard which allows it to be powered through the Ethernet cable (PoE-Powered Device).

The FMod-IPAXESCTRL board works without the use of a computer (PC or Mac). It communicates independently with the selected FMod-IPxxMOT devices (motor control cards) through the Ethernet network. It can also be easily configured with any standard web-browser, using its internal web-pages (http server onboard).

A $(4\times 20char)$ LCD can be connected in order to locally display information, and a trackball + keyboard are the available inputs to handle the axes.

This diagram shows all peripherals that can be connected to the board.

The trackball, the LCD screen and the Keyboard (4×20)

Connection architecture (Ethernet)

The figure below shows the connection diagram of the FMod-IPAXESCTRL board. The user interacts with the MMI (Man Machine Interface), e.g. the LCD, the Keypad and the Trackball, which are connected to the Axes control card. This card is connected together with the Motor control card (FMod-IPDCMOT48/1.5) to a standard/industrial Ethernet Switch (available on the market from 30.- USD) and is used in applications such as XYZ-Tables.

- The axes control board and the motor control boards are connected together to an "Ethernet IOBaseT compliant Switch". The communication between them is done through the UDP-IP protocol.
- An optional computer (PC, Mac, ...) can be connected to the same network (to the Ethernet IOBaseT compliant Switch) in order to configure the parameters of the axes control card
- The same Switch used to connect the FMod-IPAXESCTRL and the FMod-IPDCMOT48/1.5 can be connected to the Internet network (under an ADSL modem/router or a professional Router) and therefore make the system accessible from anywhere (remote).

Note: It is also possible to connect the FMod-IPAXESCTRL directly to an FMod-IPXXMOT motor control card through a simple Ethernet Cross Cable (not using the switch). In this case, the system will only be able to control one (1) motor/axis.

Board Layout

Max height: 20mm

3. Quick start

This section is intended to help users to quickly plug the module into their system and establish a connection between the computer used for the initial configuration and the card. Detailed information about hardware and software can be found further in this document.

You can find the board factory communication settings on the label that is found on the board and on the box.

The MAC Address is the 48bits unique identifier on Ethernet networks. The IP Address can be modified. The complete procedure is described further in this manual.

Note: If the module has already been configured and the IP address has been changed to an unknown value, you can retrieve an SOS IP address (on label) by pressing the "SOS button" when the card is operating normally.

Power and network

1. Connect the card to a computer using a RJ45 **cross wired** cable (direct-link), or with a straight cable to an Ethernet-switch.

Connect the cable to the card and to the PC

Connection with an Ethernet crosscable

OR

2. Connect a power supply (7-48V) or a POE injector to the module.

Discrete power supply

PoE with a Power injector

Changing IP address

To easily change the factory IP address, user can use the Win32 software provided on the CD-Rom.

- I. Plug your new card on your PC network.
- 2. Start the Win32 application.
- 3. Click on "File->Easy change IP address".
- 4. The software will scan the network and display a list of all FiveCo's devices found.
- 5. Select the MAC address corresponding to your new card.
- 6. If you have more than one network adapter on your PC, the software will ask you to select the one that is connected to the same network as the FMod-IPAXESCTRL.
- 7. The software will suggest a new IP address without the last byte. Choose a new IP (**that is not already used on your network!!**) and click the "Change IP address" button.

That's it! The card has a new address and a new subnet mask (the same as your PC). They are automatically saved into EEPROM.

You can now connect to the card with the Win32 software or open its web page by typing its new IP address into a web browser.

<u>Remark:</u>

The IP address will not be changed if a TCP connection exists with the card.

4. Hardware

There are different configurations, depending on the needs of your application:

- FMod-IPAXESCTRL + Keyboard
- FMod-IPAXESCTRL + Keyboard + trackball
- FMod-IPAXESCTRL + Keyboard + LCD
- FMod-IPAXESCTRL + Keyboard + LCD + trackball

An independent connector for each peripheral is present on the card. No particular configuration is needed to enable/disable each of them. You simply have to connect a peripheral before powering-up the card.

Note: It is better NOT to unplug the peripherals while the system is powered.

Power supply

The card can be powered in two modes:

WARNING: do NOT use both modes at the same time!

- 1. **POE** (Power Over Ethernet) 48V only, 350 mA on connector J7 (RJ45), pins 4&5(+), 7&8(-). Swapped polarity works too. Compatible with IEEE 802.3af mode B & A.
- 2. Discrete 7-48 V DC on connector J1. Negative pole is near the J7(RJ45) connector.

LCD Display

The FMod-IPAXESCTRL board drives an LCD display with 20 columns and 4 lines. LED backlight is also powered from the FMod-IPAXESCTRL, and is always ON.

Different LCD colors are available, but FiveCo recommends Crystalfontz' LCDs (www.crystalfontz.com)

The LCD used by FiveCo is Crystalfontz' model *CFAH2004A-TMI-JP* (with LSI HD44780 driver inside), blue-backlit with white characters (pictured on the left).

The connector on the FMod-IPAXESCTRL board has the same pin configuration as the one of the LCD (allowing an easy flat-cable connection), but the LCD has to be used in 4bits data mode only.

Board **J8** connector pinout:

	GND
2	5∨
3	VO (Contrast)
4	RS
5	R/W
6	E
7	- (nc)
8	- (nc)
9	- (nc)
10	- (nc)
	DB4
12	DB5
13	DB6
14	DB7
IE	Backlight 5V with a 33Ohm
13	resistor already in series.
16	Backlight GND

Keyboard

The board offers the possibility to connect two kind of MATRIX KEYBOARDS: 2x4 or 4x4.

Board J4(up) connector pinout (2x4 version):

	Column 0
2	Column I
3	Line 3
4	Line 2
5	Line I
6	Line 0

Board J4(down) connector pinout (4x4 version):

	Column 0
2	Column I
3	Column 2
4	Column 3
5	Line 2
6	Line 3
7	Line I
8	Line 0

The following diagram shows the position of each key on the keyboard (useful for the configuration).

Trackball

A two axes trackball enables the user to manage axis I and axis 2 (axis 3 is manageable only from keyboard). Each channel must have quadrature signal (A, B).

PEWATRON model LP150-5FV00 is the reference for this board. It is also possible to use other kinds of trackballs with different resolutions or even gravity independency (ex: Megatron model 816TC).

Board **J5** connector pinout and trackball connector pinout and axes:

	- (not connected)
2	- (nc)
3	- (nc)
4	5V
5	Xa
6	Yb
7	Ya
8	Xb
9	- (nc)
10	GND

FMod-IPAXESCTRL User Manual v.1.5

LEDs

The FMod-IPAXESCTRL is provided with a connector for 4 LED **(J3).** They give information about the mode (1, 2, 3) of the board and the state (activity or not) of the axes. Here is the LED's layout:

Board Mode

The different modes define the way the input (trackball and Keyboard) and output devices (LCD display) interact with the physical system (commands sent to the motor). See "Axes parameters Panel" in "Java applet" chapter for more detailed information.

Mode I = LED0 on, LED1 off Mode 2 = LED0 off, LED1 on Mode 3 = LED0 off, LED1 off

Axis State

The LEDs are especially useful in order to determine the mode on how the axes are controlled by the trackball (axes I and 2). When an axis is found and is ready to receive data, then its corresponding LED is on; if an axis is "suspended", its LED is off. It is possible to drive an axis (for ex: axisI) without modifying the other one (ex: axis2) which has been put in a "suspended" state with the press of a keyboard button.

Notes:

- No LED exists for axis 3 since it cannot be driven by the trackball.
- The LEDs display the information in any case, even if the LCD is not connected.

The board drives the lower pin (Cathode /-) of the LED while the upper one (Anode /+) is connected to 5V. An onboard 1kOhm resistor is connected in series to limit the current to \sim 3mA.

Board J3	Connector:
-----------------	------------

1	Led 0	resolution mode I
2	5V	
3	Led I	resolution mode 2
4	5V	
5	Led 2	axis I ON/OFF
6	5V	
7	Led 3	axis 2 ON/OFF
8	5V	

SOS button

This button has 2 different purposes, depending on the moment when it is pressed: at system powerup or when the system is already running.

<u>POWER UP ACTION</u> (the SOS Button is pressed during power up)

This action is useful when the "out-of-factory" state of the card needs to be exactly restored. The *RestoreFactoryParamters* (0x05) function is

SOS button

automatically called, and the actual IP address is overwritten with the SOS IP address written on the sticker of the card (169.254.5.1). After that, all these parameters are automatically saved in the User's parameters memory with the *SaveUserParameters* (0x03) function.

<u>RUNNING ACTION</u> (the SosButton is pressed while running)

This action is useful when the user has lost the actual IP address of the card, and temporarily needs to connect to it without changing all of the card's parameters.

Only the IP address is overwritten, using the SOS IP address that appears on the card's sticker (169.254.5.1). This new IP will be valid only after all TCP/IP connections (web pages included) have been closed.

In this case the SOS IP address is not automatically saved, so if you need it, you will have to manually call the *SaveUserParamters* (0x03) function. Otherwise, the previous IP will be reloaded upon the next power-up.

Warning:

Do not use the "SOS *IP address*" as the normal IP for your module (during normal board operation). If you plug another module on the same network, both will have the same IP and will therefore be impossible to both configure.

5. TCP/UDP Server

General

The board provides an Ethernet port (RJ45 – connector J7) which allows access to all parameters (registers) of the module through a TCP or UDP connection.

Here you will find a small comparison table between these two protocols (non exhaustive):

Features	UDP	ТСР
CheckSum (Data integrity)	YES	YES
Multiport (data multiplexing)	YES	YES
Flow control	NO	YES
Acknowledge Data	NO	YES
Multipacket order reconstruction	NO	YES

Two ports are available when using the **TCP protocol**:

- Port #80 for HTTP communication.
 - Port #8010 Access to the control port

Only one port is accessible through the **UDP protocol**:

Port #7010 Access to the control port

You will find a detailed description of the different ports in the next pages.

Note: The board allows up to <u>4 simultaneous TCP connections</u>. That means, for example, that 4 users can connect to the #80 port to see the web page, or 4 users can be connected to the #8010 port and control the I/Os, or even that two see the page and two control the I/Os, etc. In UDP protocol, there is no limitation on the number of users connected.

HTTP port (TCP # 80)

This port is used to access the web page stored on the module.

The user can simply access that port and ask for a particular page, through the use of a standard Web browser, and typing the IP address of the card:

Ex: type <u>http://169.254.5.1/index.htm</u> in the address bar of the browser and the "index.htm" page will be loaded.

Control port (TCP # 8010 or UDP # 7010)

This port is used to access the registers described in the chapter "Registers management" of this manual.

Note: If you plan to configure all registers only from the onboard Webpage, you can skip this section and go to the Java-Applet section. (The Java-Applet also uses this port to read and write the different settings!)

TCP/IP works in <u>big endian</u>: most significant byte first, followed by least significant byte(s). The access is done by sending a packet that follows a simple (6 byte header) protocol.

Structure of each packet:	
I) Function ID (2 bytes)	Code of the function that has to be executed.
2) Transaction ID (2 bytes)	Number that defines this packet
3) Length of the parameters (2 bytes)	Number of the parameters + data bytes
4) Parameters (X Byte)	Parameters + Data
5) Checksum (2 bytes)	Control Sum of packet's bytes

Function ID

The specific code for each function can be found on the next page of this manual.

Transaction ID

The user defines himself the values of the *Transaction ID*. Normally, each packet/transaction (communication request) should have a different ID (even though this is not mandatory). When the FMod-IPAXESCTRL receives a command/packet, it sends back an answer (at each request). This answer contains the same *Transaction ID* than the corresponding command previously sent. In that way, the user is able to check the execution of each command.

Length of the parameters

This 2byte value corresponds to the length (in bytes) of the next section of the packet (parameters only).

Parameters

This part of the packet contains all the parameters (mainly the data that are sent).

<u>Checksum</u>

This 2 bytes value is the Check Sum of all the bytes of the packet (more information on next pages).

READ register(s) value command.

Byte#		Number of bits	Example
0×00	Read (0x0021)	16 bits	0x0021
0x02	TransactionID	16 bits	0x1B34
0x04	Number of registers to	16 bits	0x0001
	read (X)		
0x06	X * Registers Addresses	X * 8 bits	0x02
0x06+X	Checksum	16 bits	0x

The maximum number of registers that can be read at one time is almost 30. The answer sequence should not be greater than 180 bytes. If the number of registers is too high, the FMod-IPAXESCTRL will answer only with the value of some of them.

The module **answers** with the following sequence:

Byte#		Number of bits	Example	
0×00	Read Answer (0x0023)	16 bits	0x0023	
0×02	TransactionID (same as demand)	16 bits	0×1B34	
0x04	Number of bytes in answer	16 bits	0x0019	
0x06	Register address	8 bits	0x02	
	Register value	8–128 bits (16B)	0x12345	
The two previous entries are replicated for each register that has				
been asked for reading				
	Checksum	16 bits	0×	

WRITE register(s) value command.

Byte#		Number of bits	Example					
0×00	Write (0x0022)	l 6 bits	0x0022					
0x02	TransactionID	l 6 bits	0x1B34					
0x04	Number of bytes in	l 6 bits	0x0003					
	command							
0x06	Register Addresses	8 bits	0x02					
0x07	Register value	8 – 64 bits	0x1234					
The two previous entries are replicated for each register that has								
been asked	been asked for reading							
	Checksum	16 bits	0×					

The maximum length of this sequence is 180 bytes.

The module **answers** with the following sequence:

Byte#		Number of bits	Example
0×00	Write Answer (0x0024)	16 bits	0x0024
0×02	TransactionID (same as	l 6 bits	0×1B34
	demand)		
0x04	0×0000	16 bits	0×0000
0x06	Checksum	16 bits	0×

Easy IP address config (UDP # 7010)

A really useful feature of the UDP port #7010 is the "Easy IP config" one.

The user who wishes to design his own software can use this feature for a "quick start/install" method. Indeed, since this protocol uses a broadcast UDP packet, the device should receive its new IP address and subnet mask, even if it is not part of the same subnet.

Procedure:

Send a UDP broadcast message (using a local or direct broadcast IP address) to your network (to which the FMod- IPAXESCTRL is connected) with the following command:

Byte#		Number of bits	Example
0×00	Change IP fct (0x002A)	16 bits	0x002A
0x02	TransactionID	16 bits	0×0000
0x04	Length of params (0x000E)	16 bits	0×000E
0x06	Device Mac Address	6 bytes	0x0050C2308101
0x0C	Device new IP Address	4 bytes	0xC0A81064
0×10	Device new SubnetMask	4 bytes	0×FFFF0000
0x14	Checksum	16 bits	0x

If the FMod- IPAXESCTRL recognizes its MAC address, it will answer this command with a simple acknowledges. It will then change its IP address and subnet mask IF NO TCP CONNECTION IS MADE TO THE BOARD.

Byte#		Number of bits	Example
0x00	Change IP fct ack (0x002B)	16 bits	0×002B
0x02	TransactionID	16 bits	0×0000
0x04	Length of params (0x0000)	16 bits	0×0000
0x14	Checksum	16 bits	0x

Checksum calculation

This checksum is the same as the IP checksum.

Definition: sum of I's complement of all 16 bits words of whole message (FiveCo packet) except checksum bytes.

Note: all values are unsigned!

Sequence:

I. Clear accumulator

Loop

- x. Only if last word is not made of two bytes, the data byte is the upper byte (big endian).
- 2. Compute I's complement of each 16bits word, result is 16bits.
- 3. Convert last result from 16 bits to 32 bits, result is 32bits: 0x0000+last result.
- 4. Add last result to the 32 bits accumulator.

Try the Loop

- 5. Convert accumulator in two 16bits words.
- 6. Add those two 16bits words, result is 16bits word.
- 7. If an overflow occurs with the last addition (Carry), add 1 to the last result.
- 8. Last result is the final result.

Example (in hexadecimal):

```
!0x0021 (0XFFDE) → 0x0000FFDE (Read)
+!0x1234 (0xEDCB) → 0x0001EDA9 (TransID)
+!0x0003 (0xFFFC) → 0x0002EDA5 (3 reg to read)
+!0x0A10 (0XF5EF) → 0x0003E394 (reg 0A,10,02)
+!0x02(00) (0XFDFF) → 0x0004E193
```

Note that in this case, a last 00 is implicitly used. (02 \rightarrow 02 00).

```
0x0004 + 0xE193 = 0xE197, (carry=0)
0xE197 + carry = 0xE197
```

Checksum = $0 \times E197$

Here is an example of a checksum calculation function in C:

```
int RetCheckSum(Byte* ByteTab, int Size)
{
    // This function returns the calculated checksum
   unsigned int
                   Sum=0;
   bool
                     AddHighByte=true;
                   ChecksumCalculated;
    unsigned int
    for(int i=0;i<Size;i++)</pre>
    {
        if(AddHighByte)
        {
            Sum+=((ByteTab[i])<<8)^0xFF00;</pre>
            AddHighByte=false;
        }
        else
        {
            Sum+=(ByteTab[i])^0x00FF;
            AddHighByte=true;
        }
    }
    if (AddHighByte==false)
    Sum+= OxFF;
    ChecksumCalculated = ((Sum>>16)&0xFFFF)+(Sum&0xFFFF);
    ChecksumCalculated = ((ChecksumCalculated>>16)&0xFFFF)
                   +(ChecksumCalculated&0xFFFF);
    return ChecksumCalculated;
```

This function needs a Byte array (ByteTab) containing the command sequence and the array's length (Size) as input. It returns the checksum as an int.

6. Configuration Application

A specific Java application is provided with the module to control all of its parameters without having to write any specific software.

A Java Runtime Environment (1.8+) needs to be present on the computer to be able to run the application. If the correct JRE is not found, a web page will be opened on the application launch to allow user to download it.

Overview

Run the FMod-IPAXESCTRLApp.exe provided on our web server at the following address : <u>https://www.fiveco.ch/product-fmod-ipaxesctrl.html</u>.

Genection Help	nfiguration application	on - Version 1.0.49 (15	.10.2019)				
Device current state	Device current state HID parameters Axis parameters Keyboard parameters Other parameters						
General							
Version (HW/FW):	1.1	/1.18					
Current Input Voltage :	39.	3 V					
Current Mode :	1						
Current LCD contrast :	799	ío -					
Axes state							
	Axi	s 1	Axis 2		Axis 3		
MAC address :	3C :	57 D5 00 01 D3	00 50 C2 30 8	E F9	00 50 C2 30 83 81		
IP address	169	.254.5.6	169.254.5.7		169.254.5.8		
Display ratio Mode 1:	1.0		1.0		1.0		
HID ratio Mode 1:	0.1		0.05		16.0		
Display ratio Mode 2:	1.0		1.0		1.0		
HID ratio Mode 2:	10.0	D	0.1		512.0		
Display ratio Mode 3:	1.0		1.0		1.0		
HID ratio Mode 3:	100	0.0	10.0		4096.0		
J					I TCP com state : C	connected Evi	

Use the "Connection->Scan network" menu to scan the network to find the FMod-IPAXESCTRL you want to configure. If you have to change the IP address of the device, you can use the easy tool under "Connection->Change IP Adress easily...".

(Scan network		same in an incase		
		S	can network to find devices.		
	Devices Found				
	MAC Address	IP Address	Туре	Version	Name
	00 50 C2 30 84 06	169.254.5.1	FMod-IPAXESCTRL (4.0)	HW:1.1/FW:1.18	IPAXESCTRL
	00 50 C2 30 8E F9	169.254.5.7	FMod-IPECMOT 48/10 (6.3)	HW:1.8/FW:7.19	IPECMOT 48/10

If several device are found by the scan device feature, you can check the MAC address of the one you want to configure to select the correct one in the table.

A click on one device will connect the application with it. Please note that the device type will be checked and you will not be able to an incorrect device type. The following paragraphs describe this application.

Device Current State Panel

The Device Current State panel shows the information specifically related to the module. The values of the parameters are displayed.

G FMod-IPAXESCTRL con	figuration applicatio	on - Version 1.0.49 (15	5.10.2019)	andra a faar		- 🗆 🗙		
Connection Help								
Device current state	HID parameters	Axis parameters	Keyboard parameters	Other parameters				
General								
Version (HW/FW):	1.1/	1.18						
Current Input Voltage :	39.3	3 V						
Current Mode :	1							
Current LCD contrast :	79%	à						
Axes state								
	Axis	s 1	Axis 2		Axis 3			
MAC address :	3C 5	57 D5 00 01 D3	00 50 C2 30 8	E F9	00 50 C2 30 83 81			
IP address	169	.254.5.6	169.254.5.7		169.254.5.8			
Display ratio Mode 1:	1.0		1.0		1.0			
HID ratio Mode 1:	0.1		0.05		16.0			
Display ratio Mode 2:	1.0		1.0		1.0			
HID ratio Mode 2:	10.0)	0.1		512.0			
Display ratio Mode 3:	1.0		1.0		1.0			
HID ratio Mode 3:	100	0.0	10.0		4096.0			
					TCP com state : Co	innected j avt		

The others panels allow to configure the device. Please note that you have to click on the "Change" button of the panel in which you made modifications to send them to the device (automatically saved in user EEPROM).

HID Parameters Panel

onnection Help						
Device current state HID parameters	Axis parameters	Keyboard parameters	Other pa	arameters		
CD contrast						
•					▶ 79%	Saved
_CD Texts						
Mode 1	Mode 2			Mode 3		
axis ml pos state	axis m2 a	angle state		axis m3	state	
X###'###'##pls (#)	X ***'***	*'### pls		X ####.##pls	s ###	
Y###'###'##pls (#)	Y ***'***	*'## pls		Y ####.##pla	* ***	
Z###'###!'##pls (#)	Z ###'###	#'# pls		Z ####.##pls	s +++	
		Change				

The LCD contains 4 lines of 20 characters each, and the user can also choose the contrast of the screen. For each board's mode, (1,2,3) the LCD display can be different.

In the "LCD texts - Mode 1/2/3", the user can define the text and values displayed on the 4 lines separately. Here is an example:

Configuration String	Output on display
"axe ml pos state "	axe m l pos state
"X ###'### pls ###"	X 123'456 pls 789 Ok

See description of "LCD MODE(i) TEXT" register (p.56) for more details

The measured value contains 8 digits (+1 more for the sign). On the display, the character '#' represents one digit of that value. If less than 9 '#' are present on a line, the least significant digits should be skipped. Other (ASCII) characters can be used with the # values.

Note: The first line is reserved for text (title), the second one shows the values of axis *I*, the third one the values of axis 2 and the last one shows the values of axis 3.

Axes Parameters Panel

This panel allows management of the parameters of the 3 motor control boards [FMod-IPxxMOT] (IP address of each Axis) that can be controlled through the FMod-IPAXESCTRL card. For each axis, the user can define 3 DIFFERENT MODES that can be configured with different settings (HIDRatio/DiplayRatio).

Device current state	HID parameters	Axis parameters	Keyboard parameters	Other parameters		
Axes configuration						
	Axis 1		Axis 2		Axis 3	
MAC address :						
IP address	169 🗧 254 🗧	5 ÷ 6 ÷	169 254 2	5 - 7 -	169 🗧 254 🗧	5 ÷ 8 ÷
Display ratio (Mode 1):	1.0		1.0	·	1.0	
HID ratio (Mode 1):	0.1		0.05	· · · · · · · · · · · · · · · · · · ·	16.0	
Display ratio (Mode 2):	1.0		1.0	·	1.0	
HID ratio (Mode 2):	10.0		0.1		512.0	
Display ratio (Mode 3):	1.0		1.0	·	1.0	
HID ratio (Mode 3):	1000.0		10.0		4096.0	
			Change			

• The ratio between the motor pulses and the value displayed with the *Display ratio*.

Example: value of 10 means: 1 motor pulse = 10 increment on LCD

• The ratio between human interface devices (keyboard or trackball) and motor pulses with *HID ratio*.

Example: value of 10 means: 1 trackball pulses = 10 increment on motor

Keyboard Parameters panel

This panel shows the keyboard's parameters.

📴 FMod-IPAXESCTRL configuration application - Version 1.0.49 (15.10.2019)										
Connection Help										
Device current state HID	oarameters	Axis parameters	Keyboa	rd (parameters	Other parameter	S			
А		В				С		[D	
17 Axe 2 On/Off	▼ 16 A	xe 1 On/Off	-	•	12 Change Me	ode	•	11 Dec Axis 3		-
E		F				G		H	н	
00 None	🔻 09 D	ec Axis 2	-	•	01 Calibration	1	•	10 Inc Axis 3		-
1		J				к		I	L	
06 Inc Axis 1	▼ 53 R	elative zero	-	•	07 Dec Axis 1		•	24 Position 2		-
м		N				0		ŧ	p	
00 None	🔻 08 Ir	nc Axis 2	-	•	00 None		•	23 Position 1		•
	Change									
							_	TCP com state : Di	sconnected	Evi

Each key of the keypad is represented by a character: from A (line0, column0) to P (line3, column3) and the corresponding list of available functions. Just press the corresponding scroll menu and choose the function you wish to program for this specific button.

N°	Function
0	None
	Set all axes to Position mode/Homing
2	Stop all axes (break mode)
3	Free all axes
4	Free selected axes
5	Set all axes to Position mode
6	Increment axis I
7	Decrement axis
8	Increment axis 2
9	Decrement axis 2
10	Increment axis 3

N°	Function
27	Go / Save position 5
28	Go / Save position 6
29	Go / Save position 7
30	Go / Save position 8
31	Go / Save position 9
32	Go / Save position 10
33	Increment axis I in Mode I
34	Decrement axis I in Mode I
35	Increment axis 2 in Mode I
36	Decrement axis 2 in Mode 1
37	Increment axis 3 in Mode I

27 / 70

	Decrement axis 3	
12	Change mode $(1 \rightarrow 2 \rightarrow 3 \rightarrow 1)$	
13	Mode I	
14	Mode 2	
15	Mode 3	
16	Axis ON-OFF	
17	Axis 2 ON-OFF	
18	Axis 3 ON-OFF	
19	Axis I suspended while pressing	
20	Axis 2 suspended while pressing	
21	Axis 3 suspended while pressing	
22	Go / Set position zero absolute	
23	Go / Save position 1	
24	Go / Save position 2	
25	Go / Save position 3	
26	Go / Save position 4	1

38	Decrement axis 3 in Mode I
39	Increment axis I in Mode 2
40	Decrement axis 1 in Mode 2
41	Increment axis 2 in Mode 2
42	Decrement axis 2 in Mode 2
43	Increment axis 3 in Mode 2
44	Decrement axis 3 in Mode 2
45	Increment axis I in Mode 3
46	Decrement axis 1 in Mode 3
47	Increment axis 2 in Mode 3
48	Decrement axis 2 in Mode 3
49	Increment axis 3 in Mode 3
50	Decrement axis 3 in Mode 3
51	Mode 2 \rightarrow Mode I (released)
52	Mode 3 \rightarrow Mode I (released)
53	Go / Set position zero relative

Warning: Some aforementioned function numbers have two behaviors (separated with a /) depending on the moment when the button is pressed. The first function will take place when the button is pressed for less than 3 seconds, and the second function takes place in the other case.

Example:

Function #23: If the press is short, "Go" is launched. If the button is pressed for more than 3 seconds, position 1 is saved.

Other Parameters Panel

FMod-IPAXESCTRL con	nfiguration applicatio	on - Version 1.0.49 (15	.10.2019)	antalian ay film	
Connection Help					
Device current state	HID parameters	Axis parameters	Keyboard parameters	Other parameters	
Communication param Rev (HW/FW) : MAC address :	neters 1.1/1.18 00 50 C2 30	84 06			
IP Address : Subnet mask : Device name : TCP timeout :		169 - 2 255 - 2 RL			Change
Voltage Current input voltage: Default parameters			40.5 V		
		Ā	Restore factory settings		
					TCP com state : Disconnected Evt

This panel can be used to change the FMod-IPAXESCTRL board's communication parameters (user should better use "Connection->Change IP Adress easily..." menu.):

- <u>IP address</u>: Press the "Change" button. The new IP address will be valid only once all current connected users have closed their connection.
- Subnet mask: useful only for special UDP directed broadcasts.

- Module name of your choice.
- **<u>TCP Timeout</u>**: Maximum time before automatic disconnection when the client does not send any packets.

This panel allows also seeing the current input voltage of the power supply.

Finally, if you want to reset all devices parameters to the factory state, click on the corresponding buttons.

7. Reference zero absolute/relative

FMod-IPAXESCTRL can work with the exact position coming from each FMod-IPxxMOT, in which case we speak about an absolute zero, because the "0" displayed on the FMod-IPAXESCTRL means that the corresponding axis *POSITION* register is really at position 0.

It is sometimes useful to set a new reference "0" that is not the "0" set during the calibration (homing) of the FMod-IPxxMOT.

There are two cases in which to perform that action:

- 1. A new "0" is sent to the corresponding FMod-IPxxMOT *POSITION* register. Absolute zero is changed, and the software minimum and maximum limitations (*INPUTMIN & INPUTMAX* registers) could make no sense because their reference "0" is changed, especially if a home position (homing) is done at power-up.
- 2. FMod-IPxxMOT POSITION register is kept unchanged but an offset value will be added locally in FMod-IPAXESCTRL.

In both cases, the value displayed and all the interactions are the same. However, with the "O relative reference", the inside FMod-IPxxMOT reference will not change. That is very important when a range of suitable positions (e.g. hardware limitation) is active.

What happens inside (when key function is pressed):

"Set position zero absolute" : AXIS I POSITIONOFFSET = 0 "Set position zero relative" : AXIS I POSITIONOFFSET += POSITION FMod-IPDCMOT (Axis I)

FMod-IPAXESCTRL

8. Registers management

Memory Organization

The user must know that a new register value sent through the communication port is loaded to the running parameters in RAM and used for the current process. All these parameters are lost at power-down. It is required to save them to "User Parameters" or "Factory Parameters", using the corresponding functions.

Action Number and description:

Full Register Description

List of registers

Address	<u>Bytes</u>	Name
General Information		
0×00	4	TYPE
0×01	4	VERSION
0×02	0 (fct)	RESETCPU
0×03	0 (fct)	SAVEUSERPARAMETERS
0×04	0 (fct)	RESTOREUSERPARAMETERS
0×05	0 (fct)	RESTOREFACTORYPARAMETERS
0×06	0 (fct)	SAVEFACTORYPARAMETERS
0×07	4	VOLTAGE
0×08	4	WARNING
Communication		
0×10 (16)	4	COMMUNICATIONOPTIONS
0×11 (17)	6	ETHERNETMAC
0×12 (18)	4	IPADDRESS
0×13 (19)	4	SUBNETMASK
0×14 (20)		TCPTIMEOUT
0×15 (21)	16	MODULENAME
0x1A (26)		TCPCONNECTIONSOPENED
General configuration		
0×20 (32)	4	DISPLAYOPTIONS
0x21 (33)	4	TRACKBALLOPTIONS
0x22 (34)	4	KEYBOARDOPTIONS
0×23 (35)	16	KEYBOARDFUNCTIONS
0x24 (36)		MODE
0×28 (40)		LCDCONTRAST
0×29 (41)	80	LCDMODEITEXT
0×2A (42)	80	LCDMODE2TEXT
0x2B (43)	80	LCDMODE3TEXT
Axis I		
0×30 (48)	4	AXIS I POSITIONOFFSET
0x31 (49)	6	AXIS I MACADDRESS
0×32 (50)	4	AXIS I IPADDRESS
0x33 (51)	4	AXIS I MODE I DISPLAYRATIO
0×34 (52)	4	AXISIMODEIHIDRATIO
0×35 (53)	4	AXIS I MODE2DISPLAYRATIO
0×36 (54)	4	AXIS I MODE2HIDRATIO
0×37 (55)	4	AXIS I MODE 3 DISPLAYRATIO
0x38 (56)	4	AXIS I MODE3HIDRATIO

32 / 70

Lis of registers (continued):

<u>Address</u>	<u>Bytes</u>	<u>Name</u>
Axis?		
0x40 (64)	4	AXIS2POSITIONOFFSET
0x4 (65)	6	AXIS2MACADDRESS
0x42 (66)	4	AXIS2IPADDRESS
0x43 (67)	4	AXIS2MODE I DISPLAYRATIO
0x44 (68)	4	AXIS2MODE I HIDRATIO
0x45 (69)	4	AXIS2MODE2DISPLAYRATIO
0x46 (70)	4	AXIS2MODE2HIDRATIO
0x47 (71)	4	AXIS2MODE3DISPLAYRATIO
0x48 (72)	4	AXIS2MODE3HIDRATIO
Axis3		
0×50 (80)	4	AXIS3POSITIONOFFSET
0×51 (81)	6	AXIS3MACADDRESS
0×52 (82)	4	AXIS3IPADDRESS
0x53 (83)	4	AXIS3MODE I DISPLAYRATIO
0x54 (84)	4	AXIS3MODE I HIDRATIO
0x55 (85)	4	AXIS3MODE2DISPLAYRATIO
0x56 (86)	4	AXIS3MODE2HIDRATIO
0×57 (87)	4	AXIS3MODE3DISPLAYRATIO
0×58 (88)	4	AXIS3MODE3HIDRATIO

TYPE

Register Address	Register Name	Function	Read/Write Control
0×00	TYPE	Product ID	Read only

<u>Register Size</u>	Register structure	
4 Bytes	Unsigned Int 16bits (HH-HL) TYPE	Unsigned Int 16bits (LH-LL) MODEL

Description:

Product identifier composed of a *Type* and *Model* number.

It defines which kind of module it is.

Normally, different TYPE modules are not software compatible.

Example:

Module with $TYPE = 0 \times 00040000$ means Type=4 (4= IP axes controller), Model = 0.

<u>Limits:</u> None

<u>Active:</u> Each time the processor is running.

VERSION

Register Address	Register Name	Function	Read/Write Control
0×01	VERSION	Software ID	Read only

Register Size	Register structure	
4 Bytes	Unsigned Int 16bits (HH-HL) Version	Unsigned Int 16bits (LH-LL) Revision

Description:

Firmware identifier composed of a Version and Revision number. Normally, same Version is backward compatible with different Revision.

Example:

Firmware 0×00010007 = Version 1, Revision 7 is compatible with all earlier revisions of the same version (ver 1.0 to 1.6) but might have new functionalities (which will be deactivated by default) or code optimizations.

<u>Limits:</u> None

<u>Active:</u>

RESET CPU

Function Address	Function Name	Function	Read/Write Control
0×02	RESETCPU	Restart processor	Write only

<u>Register Size</u>	Register structure	<u>Unit</u>
0 Bytes	none	none

Description: Restarts the CPU of the board. The communication will be lost.

<u>Active:</u>

SAVE USER PARAMETERS

Function Address	Function Name	Function	Read/Write Control
0x03	SAVEUSERPARAMETERS	Saves all in EEPROM	Write only

<u>Register Size</u>	Register structure	<u>Unit</u>
0 Bytes	none	none

Description:

Saves the following parameters in EEPROM:

0×10 COMMUNICATIONOPTIONS

0x12 IPADDRESS

0x13 SUBNETMASK

0x14 TCPWATCHDOG 0x15 MODULENAME

- 0x20 DISPLAYOPTIONS 0x21 TRACKBALLOPTIONS
- 0x22 KEYBOARDOPTIONS 0x23 KEYBOARDFUNCTIONS 0x28 LCDCONTRAST

0x29 LCDMODEITEXT

0x2A LCDMODE2TEXT

0x2B LCDMODE3TEXT

- 0x30 AXIS I POSITION OFFSET
- 0x32 AXISTIPADDRESS
- 0x33 AXIS I MODE I DISPLAYRATIO
- 0x34 AXIS I MODE I HIDRATIO
- 0x35 AXIS I MODE2DISPLAYRATIO
- 0x36 AXIS I MODE2HIDRATIO 0x37 AXIS I MODE3DISPLAYRATIO
- 0x38 AXIS I MODE3HIDRATIO

- 0x40 AXIS2POSITIONOFFSET 0x42 AXIS2IPADDRESS 0x43 AXIS2MODE I DISPLAYRATIO 0x44 AXIS2MODE1HIDRATIO 0x45 AXIS2MODE2DISPLAYRATIO 0x46 AXIS2MODE2HIDRATIO 0x47 AXIS2MODE3DISPLAYRATIO 0x48 AXIS2MODE3HIDRATIO 0x50 AXIS3POSITIONOFFSET 0x52 AXIS3IPADDRESS 0x53 AXIS3MODE I DISPLAYRATIO
- 0x54 AXIS3MODE I HIDRATIO
- 0x55 AXIS3MODE2DISPLAYRATIO 0x56 AXIS3MODE2HIDRATIO
- 0x57 AXIS3MODE3DISPLAYRATIO
- 0x58 AXIS3MODE3HIDRATIO

Limits:

Do not change any of these parameters during I sec while saving!

Active:

RESTORE USER PARAMETERS

Function Address	Function Name	Function	Read/Write Control
0x04	RESTOREUSERPARAMETERS	Restores saved values	Write only

<u>Register Size</u>	Register structure	<u>Unit</u>
0 Bytes	none	none

Description:

Restores the user parameters from EEPROM.

See SAVEUSERPARAMETERS (0x03) register list.

<u>Active:</u> Each time the processor is running.

RESTORE FACTORY PARAMETERS

Function Address	Eunction Name	Function	Read/Write Control
0×05	RESTOREFACTORYPARAMETERS	Factory default	Write only

<u>Register Size</u>	Register structure	<u>Unit</u>
0 Bytes	none	none

Description:

Restores factory parameters.

See SAVEUSERPARAMETERS (0x03) register list.

<u>Active:</u>

Each time the processor is running SAVEUSERPARAMETERS must be performed after this function for next reboot to keep these parameters.

SAVE FACTORY PARAMETERS

Function Address	Function Name	Function	Read/Write Control
0×06	SAVEFACTORYPARAMETERS	Define default	Write only

Register Size	Register structure	<u>Unit</u>
0 Bytes	none	none

Description:

This function is reserved for integrator engineers, and not for end-user. Use it when all parameters have been approved for an application. It saves in EEPROM all configurable registers for both factory parameters and user parameters.

Warning: This function also executes the SAVEUSERPARAMETERS function.

See SAVEUSERPARAMETERS (0x03) saved register list.

<u>Limits:</u>

Do not change any of these parameters during I sec while saving!

Active:

VOLTAGE

Register Address	Register Name	Function	Read/Write Control
0×07	VOLTAGE	Power module voltage	Read only

Register Size	Register structure	<u>Unit</u>
4 Bytes	Signed (2's cplt) Int 16 (HH-HL) +16 bits fixed point (LH-LL)	Volt

<u>Description:</u> Input Voltage

<u>Limits:</u>

 Max
 0x7FFFFFxx = 32'767.996

 Min
 0x000000xx = 0.0

 Step
 0x000001xx = 0.004

Example:

When read $0 \times 00234567 = 2311527$, Voltage = 35.27 (2311527/65536)

Information:

Below effective 6.5 V (0x00068000), this value has no meaning.

Active:

WARNING

Register Address	Register Name	Function	Read/Write Control
0×07	WARNING	Bit to bit state	R/W

Register Size	Register structure	<u>Unit</u>
4 Byte	Unsigned Int 32 bits , each bit independent	none

Description: This register is reserved for future use.

Active:

COMMUNICATION OPTIONS

Register Address	Register Name	Function	Read/Write Control
0x10 (16)	COMUNICATIONOPTIONS	Bit to bit settings	Write (Read)

Register Size	Register structure	<u>Unit</u>
4 Byte	Unsigned Int 32 bits , each bit independent	none

Description: This register is reserved for future use.

<u>Active:</u>

ETHERNET MAC

Register Address	Register Name	Function	Read/Write Control
0×11 (17)	ETHERNETMAC	Hardware network ID	Read only

Register Size	Register structure	<u>Unit</u>
6 Byte	6 x Unsigned Byte	none

Description:

Standard hardware unique identifier (world) for each device on an ethernet network.

Information:

If user writes into this register, the address will not be modified. This register is available only for information purposes.

IP ADDRESS

Register Address	Register Name	Function	Read/Write Control
0×12	IPADDRESS	IP network ID	Read/Write

Register Size	Register structure	<u>Unit</u>
4 Bytes	4 x Unsigned Bytes	none

Description:

Network identifier used for TCP/IP and UDP/IP. The values 255 (0xFF) and 0 (0x00) are reserved for broadcast and network addresses and should not be used in this register.

Notes:

The module will change for a new IP address only when all of its communication ports are closed. Do not forget to run a SAVEUSERPARAMETERS command.

<u>Default value:</u> 169.254.5.5

Example:

For the IP=192.168.16.14 (0xC0, 0xA8, 0x10, 0x0E), write 0xC0A8100E to IPADDRESS.

Active:

SUBNET MASK

Register Address	Register Name	Function	Read/Write Control
0×13	SUBNETMASK	IP subnet mask	Read/Write

Register Size	Register structure	<u>Unit</u>
4 Bytes	4 x Unsigned Bytes	none

Description:

Network IP subnet mask used for TCP/IP and UDP/IP.

<u>Notes:</u>

The module will change for a new subnet mask only when all of its communication ports are closed.

Do not forget to run a SAVEUSERPARAMETERS command.

If you do not want to use subnets, use one of the following subnet masks when IP address byte 0 is:

>0 and <=127	:	255.0.0.0	(Class A addresses)
> 27 and <= 9	:	255.255.0.0	(Class B addresses)
> 9 and <=223	:	255.255.255.0	(Class C addresses)

<u>Default value:</u> 255.255.0.0

Example: For the IP=10.2.6.45 and subnet mask = 255.255.0.0: IP address class = A \rightarrow netID = 10, subNetID = 2 and hostID = 6.45

<u>Active:</u> Each time the processor is running.

TCP TIMEOUT

Register Address	Register Name	Function	Read/Write Control
0×14	TCPTIMEOUT	Timeout for TCP connection	Read/Write

Register Size	Register structure	<u>Unit</u>
l Byte	Unsigned Int 8 bits	sec

Description:

The TCP timeout is a value (in seconds) after which the user will be disconnected if the board has not been accessed in the meantime.

If the value is 0, the TCP timeout is deactivated. In this case however, if the client crashes during connection, the communication will never be closed on the module's side! Because a maximum of 4 communications are allowed at the same time on the module, one of them will be blocked. If the client crashes four times, all of the 4 communications will be blocked and the module will have to be reset!

The timeout for each TCP/IP connection is reloaded when there is traffic through the port.

<u>Default value:</u> 30

<u>Limitations:</u> Max value: 255

<u>Active:</u> Each time the processor is running.

MODULE NAME

Register Address	Register Name	Function	Read/Write Control
0x15 (21)	MODULENAME	Module's ASCII name	R/W

Register Size	Register structure	<u>Unit</u>
16 Byte	16 (only) x Unsigned Byte (CHAR)	none

Description:

Name or description of the module.

Example:

For the name "Hello Module"; extend to 16 byte the name: "Hello Module''+5x space=16 Byte. So write 0x48656C6C 6F204D6F 64756C65 20202020.

<u>Active:</u>

TCP CONNECTIONS OPENED

Register Address	Register Name	Function	Read/Write Control
0×1A	TCPCONNECTIONSOPENED	Number of TCP connections that are opened	Read Only

<u>Register Size</u>	Register structure	<u>Unit</u>
l Byte	Unsigned Int 8 bits	none

Description: Number of users connected to the card using TCP. Value can be 0 to 4.

<u>Active:</u>

DISPLAY OPTIONS

Register Address	Register Name	Function	Read/Write Control
0×20 (32)	DISPLAYOPTIONS	Bit to bit settings	Write (Read)

Register Size	Register structure	<u>Unit</u>
4 Byte	Unsigned Int 32 bits , each bit independent	none

Description: This register is reserved for future use.

Active:

TRACKBALL OPTIONS

Register Address	Register Name	Function	Read/Write Control
0x21 (33)	TRACKBALLOPTIONS	Bit to bit settings	Write (Read)

Register Size	Register structure	<u>Unit</u>
4 Byte	Unsigned Int 32 bits , each bit independent	none

Description: This register is reserved for future use.

<u>Active:</u>

KEYBOARD OPTIONS

Register Address	Register Name	Function	Read/Write Control
0x22 (34)	KEYBOARDOPTIONS	Bit to bit settings	Write (Read)

Register Size	Register structure	<u>Unit</u>
4 Byte	Unsigned Int 32 bits , each bit independent	none

Description: This register is reserved for future use.

<u>Active:</u>

KEYBOARD FUNCTIONS

Register Address	Register Name	Function	Read/Write Control
0x23 (35)	KEYBOARDFUNCTIONS	A function for each key	Write (Read)

Register Size	Register structure	Unit
16 Byte	16 (only) x Unsigned Byte	none

Description:

On the keyboard, there are a number of keys but each function is not already defined to a dedicated key.

KEYBOARDFUNCTIONS register is able to link a programmed function with a key.

Each Byte represents a key (0-15). Line L0-column C0 = Byte 0, L0-C1= Byte 1, L3-C3= Byte 15.

The value of that Byte represents a function (0x00-0xFF). Not all functions already exist, see below.

The functionality of each button can be chosen between this list of values:

0×00	None	0xIA	Go / Save position 5
0×01	Set all axes to Position control mode/ Homing	0xIC	Go / Save position 6
0×02	Stop all axes (break mode)	0xID	Go / Save position 7
0x03	Free all axes	0x1E	Go / Save position 8
0x04	Free selected axes	0×1F	Go / Save position 9
0×05	Set all axes to Position mode	0×20	Go / Save position 10
0x06	Increment axis I / Repeat	0x21	Inc. axis I in Mode I / Repeat
0×07	Decrement axis I / Repeat	0x22	Dec. axis I in Mode I / Repeat
0×08	Increment axis 2 / Repeat	0x23	Inc. axis 2 in Mode I / Repeat
0×09	Decrement axis 2 / Repeat	0x24	Dec. axis 2 in Mode I / Repeat
0x0A	Increment axis 3 / Repeat	0x25	Inc. axis 3 in Mode I / Repeat
0×0B	Decrement axis 3 / Repeat	0x26	Dec. axis 3 in Mode I / Repeat
0x0C	Change mode (1,2,3,1)	0x27	Inc. axis I in Mode 2 / Repeat
0x0D	Mode I	0x28	Dec. axis I in Mode 2 / Repeat
0×0E	Mode 2	0x29	Inc. axis 2 in Mode 2 / Repeat
0×0F	Mode 3	0x2A	Dec. axis 2 in Mode 2 / Repeat
0×10	Axis I ON-OFF	0x2B	Inc. axis 3 in Mode 2 / Repeat
0×11	Axis 2 ON-OFF	0x2C	Dec. axis 3 in Mode 2 / Repeat
0x12	Axis 3 ON-OFF	0x2D	Inc. axis I in Mode 3 / Repeat
0x13	Axis I suspended while pressing	0x2E	Dec. axis I in Mode 3 / Repeat
0x14	Axis 2 suspended while pressing	0×2F	Inc. axis 2 in Mode 3 / Repeat
0x15	Axis 3 suspended while pressing	0x30	Dec. axis 2 in Mode 3 / Repeat
0x16	Go / Set position zero absolute	0x31	Inc. axis 3 in Mode 3 / Repeat
0x17	Go / Save position 1	0x32	Dec. axis 3 in Mode 3 / Repeat
0×18	Go / Save position 2	0x33	Mode 3 \rightarrow Mode 1 (when released)
0×19	Go / Save position 3	0x34	Mode 2 \rightarrow Mode 1 (when released)
0xIA	Go / Save position 4	0x35	Go / Set position zero relative

Note: All description with "/" have a different functionality if the key is pressed shortly (<3 seconds) or pressed for more than 3 seconds.

Limits: For each Byte: Min: 0x00 (0) Max: 0x35 (53) Default: 0x00

Example:

<u>Active:</u> Each time the processor is running.

MODE

Register Address	Register Name	Function	Read/Write Control
0x24 (36)	MODE	Identifier of interface mode	Read (Write)

Register Size	Register structure	<u>Unit</u>
l Byte	Unsigned Int 8 bits	none

Description:

There are 3 independent modes. The value of this register is very important, since it decides which set of other registers are in use.

It can be changed with the communication protocol or with a keyboard functions.

Each mode has a specific LCD display and a specific input/output ratio (input=HID/output=Display).

Here is the list of registers selected with MODE=1:

0x29LCDMODE I TEXT0x33AXIS I MODE I DISPLAYRATIO0x34AXIS I MODE I DISPLAYRATIO0x43AXIS2MODE I DISPLAYRATIO0x44AXIS2MODE I HIDRATIO0x43AXIS3MODE I DISPLAYRATIO0x44AXIS3MODE I DISPLAYRATIO

<u>Limits:</u>

Min:	
Max:	3

<u>Default:</u>

I (at power up)

LCD CONTRAST

Register Address	Register Name	Function	Read/Write Control
0×28 (40)	LCDCONTRAST	Define LCD contrast	Write (Read)

Register Size	Register structure	<u>Unit</u>
l Byte	Unsigned Int 8 bits	none

Description:

This value is converted to a voltage which is needed by the LCD for its contrast.

WARNING: HIGH CONTRAST CAN REDUCE THE LIFE OF THE LCD.

To select the contrast of the LCD, begin at 0 and increase it until the visibility is good. If you keep increasing it, you will probably not see a real difference, but the LCD will not appreciate it on the long term. Too high levels can be detected after a long use (>I day) when older characters (image retention) still appear on the LCD positions that should be filled with blank (space) characters.

Each LCD has an operating voltage pin (Vo) depending of LCD type and temperature.

Typically at 25°C Vo is ~0.5V (Vdd-Vo=4.5v).

Examples:

0-127	T°>25°C
128-255	T<25°C

Limits: Min: 0 ~2V (for 50°... 70°) Max: 255 ~0V (for 0 ... -20°C)

<u>Default:</u> 127 = ~0.5V for 25°

<u>Active:</u> Each time the processor is running.

LCD MODEI TEXT

Register Address	Register Name	Function	Read/Write Control
0x29 (41)	LCDMODEITEXT	Mode's I display text	Write (Read)

Register Size	Register structure	<u>Unit</u>
80 Byte (only)	80 × Char (Unsigned Byte)	none

Description:

When register MODE=1, the text defined with LCDMODEITEXT is displayed on the LCD.

The first line is static (text), while the other 3 lines are dedicated to one axis each (line2=axis1, line3=axis2, line4=axis3). A line ALWAYS has 20 characters.

Each axis position is multiplied with AXIS(i)MODE(j)DISPLAYRATIO, (i,j=1,2,3) depending on the mode used. The integer result can be displayed on the corresponding line on the LCD.

8 digits and 1 more character for the sign are displayable. Values range from -16'777'216 to16'777'215. With bigger values, "MAX" is displayed, and with lower values "MIN" is displayed. To define the place of each character, put "#" in the text. If all 9 "#" are not defined, the least significant characters are skipped.

For example: if -07'654'321 is the result of a multiplication. The 2 LSB are useless, only 7 # will shows the good result: -076543.

The 2 last characters of the line are always overwritten with the status of the axis, so do not use them.

For ASCII table compatibility, see the LCD datasheet pattern generator to know which characters are displayable.

<u>Example:</u>			
	Byte Id	01234567890123456789	
Byte range			
019		"Module Mode 1	`
20 39		"Axis1 ####.### um `	•
40 59		``2 ###'###'### pls`	•
60 79		"3####mm ###11m (#)	N

WARNING: Be sure to always send 20 characters for each line (4x), for a total of 80 characters (bytes) to this register.

LCD MODE2 TEXT

Register Address	egister Address Register Name		Read/Write Control
0x2A (42) LCDMODE2TEXT		Mode's 2 display text	Write (Read)

Register Size	Register structure	<u>Unit</u>
80 Byte	80 x Char (Unsigned Byte)	none

Description:

When register MODE=2, the text defined with LCDMODE2TEXT is displayed on the LCD. See *LCDMODE ITEXT* (0x29) for more details.

LCD MODE3 TEXT

Register Address	Register Name	Function	Read/Write Control
0x2B (43)	LCDMODE3TEXT	Mode's 3 display text	Write (Read)

Register Size	Register structure	<u>Unit</u>
80 Byte	80 × Char (Unsigned Byte)	none

Description:

When register *MODE*=3, the text defined with *LCDMODE3TEXT* is displayed on the LCD.

See LCDMODE ITEXT (0x29) for more details.

AXIS I – POSITION OFFSET

Register Address	Register Name	Function	Read/Write Control
0x30 (48)	AXIS I POSITIONOFFSET	define relative reference	R/W

Register Size	Register structure	<u>Unit</u>
4 Byte	Signed (2's complement) Int 32	Pulse

Description:

Creates an offset with corresponding POSITION (and INPUT) register of axis I.

When this register is updated with Key function "Set zero absolute" or "Set zero relative", its value is automatically saved in User-EEPROM.

<u>Limits:</u>

Max 0x7FFFFFF = 2'147'483'647 Min 0x8000000 = -2'147'483'648

<u>Default:</u>

0

<u>Active:</u>

Each time the processor is running. To disable relative reference, write 0 or press Key with function "Set zero absolute".

AXIS I - MAC ADDRESS

Register Address	Register Name	Function	Read/Write Control
0x31 (49)	AXIS I MACADDRESS	Hardware network ID	Read only

Register Size	Register structure	<u>Unit</u>
6 Byte	6 x Unsigned Byte	none

Description:

Standard ethernet network's hardware unique identifier for axis number 1.

Information:

This register is available only for information purposes.

<u>Default:</u>

0xFFFFFFFFFFF while a connection has not already been made.

AXIS I - IP ADDRESS

Register Address	Register Name	Function	Read/Write Control
0×32 (50)	AXIS I IPADDRESS	IP network ID	Write (Read)

Register Size	Register structure	<u>Unit</u>
4 Byte	4 x Unsigned Byte	none

Description:

Network identifier for axis number 1 used for UDP/IP.

To disable the use of this axis, write 0x0000000 to this register.

The values 255 (0xFF) are reserved for broadcast and network address and should not be used in this register.

 Default:
 I 69.254.5.5 (Axis I)
 = default IP address of module FMod-IPDCMOT or FMod-IPECMOT.

 I 69.254.5.6 (Axis 2)
 I 69.254.5.7 (Axis 3)

<u>Example:</u>

For the IP=192.168.16.14 (0xC0, 0xA8, 0x10, 0x0E), write 0xC0A8100E to AXIS1IPADDRESS.

AXIS I - MODE I - DISPLAY RATIO

Register Address	Register Name	Function	Read/Write Control
0x33 (51)	AXIS I MODE I DISPLAYRATIO	Convert the display value	Write (Read)

Register Size	Register structure	<u>Unit</u>
4 Byte	Float 32 bits , (IEEE 754-1985)	none

Description:

While MODE=1 only. For axis 1 only.

The incoming position (integer value) of the axis is multiplied with this value and the result (integer value) is displayed on the corresponding axis line on the LCD.

<u>Default:</u> 1.0

Example:

If you want to display micrometers (while MODE=1), and 1000 increments of axis 1 correspond to 1um, set AXIS1MODE1DISPLAYRATIO to 0.001 (1/1000).

<u>Active:</u>

AXIS I - MODE I - HID RATIO

Register Address	Register Name	Function	Read/Write Control
0x34 (52)	AXIS I MODE I HIDRATIO	Convert human input to motor goal	Write (Read)

Register Size	Register structure	<u>Unit</u>
4 Byte	Float 32 bits , (IEEE 754-1985)	none

Description:

While MODE=1 only. For axis 1 only.

When the end-user interacts with the keyboard or with the trackball to move an axis, the human interface device (HID) output is multiplied with AXIS I MODE I HIDRATIO and the result is sent to the motor's new goal.

<u>Default:</u>

0.1

Example:

For big motor movement, an HID increment (a key pressed once, or a trackball pulse) can result in multiple position increments on the motor's side. AXISIMODEIHIDRATIO > 1.

For small motor movement, multiple HID increments (a key pressed repetitively or several trackball pulses) can result in 1 position increments on the motor's side. AXISIMODEIHIDRATIO < 1.

<u>Active:</u>

AXIS I - MODE 2 - DISPLAY RATIO

Register Address	Register Name	Function	Read/Write Control
0×35 (53)	AXIS I MODE2DISPLAYRATIO	Convert the display value	Write (Read)

<u>Register Size</u>	Register structure	<u>Unit</u>
4 Byte	Float 32 bits	none

Description: For MODE=2 and axis 1 only. See AXIS1MODE1DISPLAYRATIO (0x33) for details.

AXIS I - MODE 2 - HID RATIO

Register Address	Register Name	Function	Read/Write Control
0x36 (54)	AXIS I MODE 2 HIDRATIO	Convert human input to motor goal	Write (Read)

<u>Register Size</u>	Register structure	<u>Unit</u>
4 Byte	Float 32 bits	none

Description:

While MODE=2 only. For axis 1 only. See AXIS I MODE I HIDRATIO (0x34) for details.

AXIS I - MODE 3 - DISPLAY RATIO

Register Address	Register Name	Function	Read/Write Control
0x37 (55)	AXIS I MODE3DISPLAYRATIO	Convert the display value	Write (Read)

<u>Register Size</u>	Register structure	<u>Unit</u>
4 Byte	Float 32 bits	none

Description:

While MODE=3 only. For axis 1 only. See AXIS I MODE I DISPLAYRATIO (0x33) for details.

AXIS I - MODE 3 - HID RATIO

Register Address	Register Name	Function	Read/Write Control
0x38 (56)	AXIS I MODE 3 HIDRATIO	Convert human input to motor goal	Write (Read)

<u>Register Size</u>	Register structure	<u>Unit</u>
4 Byte	Float 32 bits	none

Description:

While MODE=3 only. For axis I only. See AXIS I MODE I HIDRATIO (0x34) for details.

Other AXIS 2 registers

Register Addresses	Register concerned	<u>See Axis I</u>
0x40 - 0x48	All Axis 2 registers	0x30 – 0x38

The use of these registers (0x40-0x48) is the same as described for AXIS I, but applied to AXIS 2. Please refer to the corresponding pages in this manual.

Other AXIS 3 registers

Register Addresses	Register concerned	<u>See Axis I</u>
0x50 - 0x58	All Axis 3 registers	0x30 – 0x38

The use of these registers $(0 \times 50 - 0 \times 58)$ is the same as described for AXIS I, but applied to AXIS 3. Please refer to the corresponding pages in this manual.

70 / 70

Contact address:

FiveCo - Innovative Engineering En Budron H I I CH-1052 Le Mont-sur-Lausanne Switzerland Tel: +41 21 632 60 10 Fax: +41 21 632 60 11

www.fiveco.ch info@fiveco.ch

FMod-IPAXESCTRL User Manual v.1.5